por silvia fillet » Qua Fev 15, 2012 19:50
Um matemático resolve fazer uma rifa para 100 pessoas, para conseguir vender um relógio no valor de R$ 1.000,00. Seriam vendidos 100 números de "00 a 99"que seriam colocados em uma urna com pedras numeradas de 00 a 99. O preço da rifa seria pelo número da pedra, ou seja, deveria ser pago o número da pedra sorteada (pegou 23 na urna, paga-se R$ 23,00) e um número retirado da urna não voltaria para a urna. Ao final, o ganhador do relógio seria dado pela extraçao da loteria federal do final do mes. Entao:
a) qual o valor que seria arrecadado, vendendo-se todos os 100 números contidos na urna? E qual o lucro obtido em relaçao ao valor do relogio?
b) Quantos números no mínimo deveriam ser colocados na urna começando em 00 para que o valor arrecadado cobrisse o valor do relogio?
-
silvia fillet
- Usuário Parceiro

-
- Mensagens: 89
- Registrado em: Qua Out 12, 2011 21:07
- Formação Escolar: GRADUAÇÃO
- Área/Curso: licenciatura em matematica
- Andamento: formado
por silvia fillet » Sáb Fev 18, 2012 11:24
S = (a1 + an)*n/2
S = (0 + 99)*100/2 = 9900/2 = 4950
4950 - 1000 = 3950
a) O valor arrecadado seria de R$ 4.950,00 e o lucro obtido em relação ao relógio seria de R$ 3.950,00.
0 + 1 + 2 + ... + n = 1000
1000 = (0 + n)*(n+1)/2
2*1000 = n*(n+1)
2000 = n² + n
n² + n - 2000 =0
= 1² - 4(-2000) = 1 + 8000 = 8001
?(8001 =89,4)
n =( (-1±89,4)/2)
n^1 =((-1 +89,4)/2 )=88,4/2=44,2
Logo, valor numérico de n=45
n+1 (número de termos da PA) = 45 +1 = 46
No mínimo devem ser colocados na urna 46 números, a saber, do 00 ao 45
-
silvia fillet
- Usuário Parceiro

-
- Mensagens: 89
- Registrado em: Qua Out 12, 2011 21:07
- Formação Escolar: GRADUAÇÃO
- Área/Curso: licenciatura em matematica
- Andamento: formado
Voltar para Progressões
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Integral da soma/Soma das Integrais.
por Sobreira » Ter Abr 30, 2013 17:41
- 0 Respostas
- 2024 Exibições
- Última mensagem por Sobreira

Ter Abr 30, 2013 17:41
Cálculo: Limites, Derivadas e Integrais
-
- Soma de PG
por a_guia » Seg Jan 04, 2010 22:19
- 1 Respostas
- 1930 Exibições
- Última mensagem por Molina

Seg Jan 04, 2010 22:54
Progressões
-
- Soma
por manuoliveira » Dom Mai 30, 2010 18:23
- 1 Respostas
- 8295 Exibições
- Última mensagem por Douglasm

Dom Mai 30, 2010 20:08
Binômio de Newton
-
- SOMA DE PA
por cristiano » Seg Mai 16, 2011 16:18
- 1 Respostas
- 1611 Exibições
- Última mensagem por Molina

Seg Mai 16, 2011 20:44
Progressões
-
- Soma de uma PA
por ViniRFB » Sáb Mar 10, 2012 14:05
- 4 Respostas
- 1942 Exibições
- Última mensagem por ant_dii

Sáb Mar 10, 2012 15:51
Progressões
Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes
Assunto:
(FGV) ... função novamente rs
Autor:
my2009 - Qua Dez 08, 2010 21:48
Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :
Assunto:
(FGV) ... função novamente rs
Autor: Anonymous - Qui Dez 09, 2010 17:25
Uma função de 1º grau é dada por

.
Temos que para

,

e para

,

.

Ache o valor de

e

, monte a função e substitua

por

.
Assunto:
(FGV) ... função novamente rs
Autor:
Pinho - Qui Dez 16, 2010 13:57
my2009 escreveu:Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :
f(x)= 2.x
f(3)=2.3=6
f(4)=2.4=8
f(10)=2.10=20
Assunto:
(FGV) ... função novamente rs
Autor:
dagoth - Sex Dez 17, 2010 11:55
isso ai foi uma questao da FGV?
haahua to precisando trocar de faculdade.
Assunto:
(FGV) ... função novamente rs
Autor:
Thiago 86 - Qua Mar 06, 2013 23:11
Saudações!
ví suaquestão e tentei resolver, depois você conta-me se eu acertei.
Uma função de 1º grau é dada por y=3a+b
Resposta :
3a+b=6 x(4)
4a+b=8 x(-3)
12a+4b=24
-12a-3b=-24
b=0
substituindo b na 1°, ttenho que: 3a+b=6
3a+0=6
a=2
substituindo em: y=3a+b
y=30+0
y=30

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.