• Anúncio Global
    Respostas
    Exibições
    Última mensagem

furg- os números que expressam angulos internos

furg- os números que expressam angulos internos

Mensagempor Natalie » Sex Set 16, 2011 18:30

Furg-Os numeros que expressam os angulos internos de um quadrilatero estao em PG de razao 1/2.A soma dos angulos desse quadriatero é igual a:
a)60 graus
b)72 graus
c)90 graus
d)130 graus
e)180 graus
a pg tem que ser de quatro termos?
Natalie
Novo Usuário
Novo Usuário
 
Mensagens: 7
Registrado em: Ter Set 13, 2011 16:25
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: cursinho pré vestibular
Andamento: cursando

Re: furg- os números que expressam angulos internos

Mensagempor MarceloFantini » Sex Set 16, 2011 18:45

Sim.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado


Voltar para Progressões

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}