por Alessandrasouza » Ter Mai 18, 2010 18:59
Oie gente..entaum.. eu to com uma dúvida de novoo...na verdade é outra pro meesmo assuunto.. É um problema de PA q eu resolvi mas acho q tá muito grande a resolução e nem sei se está de fato correto..É assim:
Alexandre comprou um album com espaço para 660 figurinhas. Td dia ele compra 20 pacotinhos, sendo 5 figurinhas em kd uma. No 1º dia ele colocou todas. No 2º dia, vieram algumas repetidas e colocou 95. No 3º 90 e assim por diante. Calcule o tempo necessáriop/ preencher o album...
E eu fiz assim:
Sn =
660=

660=
![\frac{[100+(100+(n-1)-5)].n}{2} \frac{[100+(100+(n-1)-5)].n}{2}](/latexrender/pictures/8df70cb7e2040c23ba7fb64f483a30a2.png)
660=
![\frac{[100+100-5n+5].n}{2} \frac{[100+100-5n+5].n}{2}](/latexrender/pictures/e5af354d52ced4fa9254e8be095bded4.png)
660=
![\frac{[205-5n].n}{2} \frac{[205-5n].n}{2}](/latexrender/pictures/b306ca4da5f432c1107fad3ba1e3a752.png)
2.(660)= 205n-5

1320= 205n-5

0=-1320+205n-5

dividi td por -5 p/ simplificar
0=264-41n+1

virou uma equação de 2ºgrau a=1 b=-41 c=264
resolvendo a equação de 2ºgrau têm-se que
n1=33 n2=8Por isso, eu quero saber se naum tem um jeito de fazer que seja menor....
-
Alessandrasouza
- Novo Usuário

-
- Mensagens: 5
- Registrado em: Sex Mai 14, 2010 15:10
- Formação Escolar: EJA
- Área/Curso: ensino médio
- Andamento: cursando
por MarceloFantini » Ter Mai 18, 2010 23:07
O jeito analítico acredito que seja somente esse, mas você pode fazer a soma no braço (não é tão grande).
Futuro MATEMÁTICO
-
MarceloFantini
- Colaborador Moderador

-
- Mensagens: 3126
- Registrado em: Seg Dez 14, 2009 11:41
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
por Cleyson007 » Qua Mai 19, 2010 19:17
Boa noite Alessandra e Fantini!
Também não consegui desenvolver outra forma de resolução (acredito que se houver outra forma, não irá fugir muito de P.A...)
O resultado está correto! é interessante observar que a P.A. é decrescente, portanto,

.
Achei interessante que a resolução cai numa equação do 2º grau... portanto, duas raízes reais (valores de n).
Fiquei com uma dúvida: "Como se explica o fato de possuírem dos valores que satisfazem (algebricamente) a condição?"Acredito que a resposta coerente para esse tipo de exercício seja
8 dias.. quando o Alexandre chegar no 33º dia, as figurinhas já não estariam todas coladas?
Até mais.
-

Cleyson007
- Colaborador Voluntário

-
- Mensagens: 1228
- Registrado em: Qua Abr 30, 2008 00:08
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Matemática UFJF
- Andamento: formado
por MarceloFantini » Qui Mai 20, 2010 02:24
Porque eles satisfazem a equação. Lembre-se que a equação não sabe do problema, nós é que sabemos da situação real representada pela equação.
Futuro MATEMÁTICO
-
MarceloFantini
- Colaborador Moderador

-
- Mensagens: 3126
- Registrado em: Seg Dez 14, 2009 11:41
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
Voltar para Progressões
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- (UNIFOR) Progressão Aritmética e Progressão Harmônica
por andersontricordiano » Ter Mar 22, 2011 12:56
- 1 Respostas
- 6009 Exibições
- Última mensagem por LuizAquino

Ter Mar 22, 2011 13:52
Progressões
-
- Progressão aritmética e progressão geométrica
por Danilo Dias Vilela » Sex Mar 12, 2010 13:41
- 1 Respostas
- 4598 Exibições
- Última mensagem por thadeu

Sex Mar 12, 2010 17:36
Progressões
-
- [Aritmética] Progressão Aritmética.
por Pessoa Estranha » Qua Ago 28, 2013 22:11
- 2 Respostas
- 5478 Exibições
- Última mensagem por Pessoa Estranha

Qui Ago 29, 2013 16:06
Aritmética
-
- Progressão Aritmética
por Rejane Sampaio » Qua Set 17, 2008 16:20
- 1 Respostas
- 4326 Exibições
- Última mensagem por juliomarcos

Qui Set 18, 2008 13:07
Álgebra Elementar
-
- Progressão Aritmética (PA)
por Cleyson007 » Ter Jan 27, 2009 21:40
- 2 Respostas
- 8264 Exibições
- Última mensagem por Cleyson007

Sáb Mai 30, 2009 12:31
Progressões
Usuários navegando neste fórum: Nenhum usuário registrado e 5 visitantes
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Dom Jan 17, 2010 14:42
Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?

O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois

2°) Admitamos que

, seja verdadeira:

(hipótese da indução)
e provemos que

Temos: (Nessa parte)

Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Seg Jan 18, 2010 01:55
Boa noite Fontelles.
Não sei se você está familiarizado com o
Princípio da Indução Finita, portanto vou tentar explicar aqui.
Ele dá uma equação, no caso:
E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:
Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que

seja verdadeiro, e pretendemos provar que também é verdadeiro para

.
Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.
Espero ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Seg Jan 18, 2010 02:28
Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Qui Jan 21, 2010 11:32
Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Jan 21, 2010 12:25
Boa tarde Fontelles!
Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.
O que temos que provar é isso:

, certo? O autor começou do primeiro membro:
Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:
Que é outra verdade. Agora, com certeza:
Agora, como

é

a

, e este por sua vez é sempre

que

, logo:
Inclusive, nunca é igual, sempre maior.
Espero (dessa vez) ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Caeros - Dom Out 31, 2010 10:39
Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?
Assunto:
Princípio da Indução Finita
Autor:
andrefahl - Dom Out 31, 2010 11:37
c.q.d. = como queriamos demonstrar =)
Assunto:
Princípio da Indução Finita
Autor:
Abelardo - Qui Mai 05, 2011 17:33
Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Mai 05, 2011 20:05
Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Assunto:
Princípio da Indução Finita
Autor:
Vennom - Qui Abr 26, 2012 23:04
MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa.

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.