• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Questão de concurso

Questão de concurso

Mensagempor antonybel » Seg Jul 18, 2022 22:41

Em uma autoestrada há cinco saídas. As distâncias entre duas saídas consecutivas são todas iguais e a distância entre a segunda e a quarta saída é 36 km. A distância entre a primeira e a quinta saída, em quilômetros, é:
antonybel
Usuário Ativo
Usuário Ativo
 
Mensagens: 18
Registrado em: Sex Nov 11, 2011 10:12
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: Questão de concurso

Mensagempor DanielFerreira » Sáb Set 03, 2022 14:08

Olá antonybel!

antonybel escreveu:Em uma autoestrada há cinco saídas. As distâncias entre duas saídas consecutivas são todas iguais e a distância entre a segunda e a quarta saída é 36 km. A distância entre a primeira e a quinta saída, em quilômetros, é:


Sejam \mathtt{s_1}, \mathtt{s_2}, \mathtt{s_3}, \mathtt{s_4} e \mathtt{s_5} as saídas da autoestrada. De acordo com o enunciado, \mathbf{s_4 - s_2 = 36}. Posto isto, determinemos \mathtt{s_5 - s_1}. Segue:



\\ \mathtt{s_4 - s_2 = 36} \\ \mathtt{\left ( s_1 + 3r \right ) - \left ( s_1 + r \right ) = 36} \\ \mathtt{s_1 + 3r - s_1 - r = 36} \\ \mathtt{2r = 36} \\ \mathtt{\boxed{\mathtt{r = 18 \, km}}}

Logo,

\\ \mathtt{s_5 - s_1 =} \\ \mathtt{\left \( s_1 + 4r \right \) - s_1 =} \\ \mathtt{s_1 + 4r - s_1 =} \\ \mathtt{4r =} \\ \mathtt{4 \cdot 18 =} \\ \mathtt{\boxed{\boxed{\mathtt{72 \, km}}}}
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1728
Registrado em: Qui Jul 23, 2009 21:34
Localização: Engº Pedreira - Rio de Janeiro
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: formado


Voltar para Progressões

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: (FGV) ... função novamente rs
Autor: my2009 - Qua Dez 08, 2010 21:48

Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :


Assunto: (FGV) ... função novamente rs
Autor: Anonymous - Qui Dez 09, 2010 17:25

Uma função de 1º grau é dada por y=ax+b.
Temos que para x=3, y=6 e para x=4, y=8.
\begin{cases}6=3a+b\\8=4a+b\end{cases}
Ache o valor de a e b, monte a função e substitua x por 10.


Assunto: (FGV) ... função novamente rs
Autor: Pinho - Qui Dez 16, 2010 13:57

my2009 escreveu:Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :



f(x)= 2.x
f(3)=2.3=6
f(4)=2.4=8
f(10)=2.10=20


Assunto: (FGV) ... função novamente rs
Autor: dagoth - Sex Dez 17, 2010 11:55

isso ai foi uma questao da FGV?

haahua to precisando trocar de faculdade.


Assunto: (FGV) ... função novamente rs
Autor: Thiago 86 - Qua Mar 06, 2013 23:11

Saudações! :-D
ví suaquestão e tentei resolver, depois você conta-me se eu acertei.
Uma função de 1º grau é dada por y=3a+b

Resposta :
3a+b=6 x(4)
4a+b=8 x(-3)
12a+4b=24
-12a-3b=-24
b=0
substituindo b na 1°, ttenho que: 3a+b=6
3a+0=6
a=2
substituindo em: y=3a+b
y=30+0
y=30
:coffee: