por solon » Qui Jul 23, 2015 17:57
seja (a1, a2, ..., an) uma progressão geométrica com um número ímpar de termos e razão q>0. O produto de seus termos é igual a 2^25 e o termo do meio é 2^5. Se a soma dos (n-1) primeiros termos é igual a 2(1+q)(1+q^2), então :
a) a1 + q =16
b) a1 + q =12
c) a1 + q = 10
d) a1 + q + n = 20
e) a1 + q + n = 11
-
solon
- Novo Usuário

-
- Mensagens: 8
- Registrado em: Ter Jul 14, 2015 02:02
- Formação Escolar: GRADUAÇÃO
- Área/Curso: matemática
- Andamento: formado
por solon » Qui Jul 30, 2015 20:03
Como n é ímpar, então o termo do meio é ? a?_((n+1)/2).Digite a equação aqui.
A P.G. proposta é do tipo a_(1,) a_2, ..., a_((n+1)/2) , ..., a_n), (com razão q > 0.
Aplicando uma das propriedades da P.G., temos:
a_((n+1)/2 =) ?(a_1.a_(n ) ) ? a_1.a_n =??(? a?_((n+1)/2) )^2 ? ? a_1.a_n = (? 2 ?^5 )^2 ? a_1.a_n = 2^10
O produto dos n primeiros termos da P.G. (a_(1,) a_2, ..., a_((n+1)/2) , ..., n ), é dado por P_n= ?((?a_(1 ).a_n )?^n ) .
Substituindo P_n por 2^25 e a_1. a_n por 2^10 , vem:
P_n = ?((?a_(1 ).a_n)?^n ) ?2^25 = ?((??2^10?_ )?^n ) ? 2^25 = ?((??2^n?_ )?^10 ) ? 2^25 =? (2 ?^n )^5 ?
2^25 = 2^5n ? 5n = 25 ? n = 5
A soma dos (n – 1) primeiros termos dessa P.G. é dada por 2 ? ( 1 + q ) ? (1 + q^2 )
Como n = 5, o termo do meio é o terceiro, isto é:
a_3 = a_1? q^2 ? a_1 = a_3/q^2 ? a_(1 )= 32/q^2
Segue que:
S_4 = (a_1 ? ( q^4 -1 ))/(( q-1 )) ? S_4 = (32 ? [(q^2 )^2 -1 ])/(q^2 ? (q-1)) ? S_4 = (32 ?(q^2-1) ? (q^2-1))/(q^2 ? (q-1) ) ? S_4 = (32 ?(q^2+ 1) ? (q+1) ? (q-1))/(q^2 ? (q-1) )
Substituindo S_4 por 2? (1+q)? (1+ q^2 ), vem:
2 ? (1+q)? (1+q^2 ) = (32 ? (q^2+ 1) ? (q + 1) ? (q - 1))/(q^2 ? (q -1) ) ? 32/q^2 = 2 ? q^2 = 16 ? q = 4 ou q = -4 ( não convém, pois devemos ter q > 0 )
O primeiro termo é dado por: a_1 = 32/q^2 ? a_1 = 32/q^2 ? a_1 = 32/4^2 ? a_1 = 2
Como a_1 = 2, q = 4, n = 5, temos: a_1+ q +n=11
-
solon
- Novo Usuário

-
- Mensagens: 8
- Registrado em: Ter Jul 14, 2015 02:02
- Formação Escolar: GRADUAÇÃO
- Área/Curso: matemática
- Andamento: formado
por solon » Sáb Ago 01, 2015 03:48
Como n é ímpar, então o termo do meio é

.
A P.G. proposta é do tipo

, (com razão q > 0.
Aplicando uma das propriedades da P.G., temos:
O produto dos n primeiros termos da P.G.

, é dado por
^{n}. P_n = \sqrt[]({{a}_{1}.{a}_{n}})^{n}.](/latexrender/pictures/9089f1edffbbc7dbbf385ef01a8f3008.png)
.
Substituindo P_n por

e

, vem:
A soma dos (n – 1) primeiros termos dessa P.G. é dada por 2 ? ( 1 + q ) ? (1 + q^2 )
Como n = 5, o termo do meio é o terceiro, isto é:
Segue que:
![{s}_{4} = \frac{{a}_{1\left({q}^{4}-1 \right)}}{\left(q-1 \right)}\rightarrow{s}_{4} = \frac{32\left[\left({{q}^{2}} \right)^{2}-1 \right]}{{q}^{2}.\left(q-1 \right)}\rightarrow{s}_{4} = \frac{32\left({q}^{2}-1 \right).\left({q}^{2}-1 \right)}{{q}^{2}.\left(q-1 \right)}\rightarrow{s}_{4} = \frac{32\left({q}^{2}+1).\left(q+1 \right).\left(q-1 \right) \right)}{{q}^{2}.\left(q-1 \right)} {s}_{4} = \frac{{a}_{1\left({q}^{4}-1 \right)}}{\left(q-1 \right)}\rightarrow{s}_{4} = \frac{32\left[\left({{q}^{2}} \right)^{2}-1 \right]}{{q}^{2}.\left(q-1 \right)}\rightarrow{s}_{4} = \frac{32\left({q}^{2}-1 \right).\left({q}^{2}-1 \right)}{{q}^{2}.\left(q-1 \right)}\rightarrow{s}_{4} = \frac{32\left({q}^{2}+1).\left(q+1 \right).\left(q-1 \right) \right)}{{q}^{2}.\left(q-1 \right)}](/latexrender/pictures/618d67a08ac357403df758e435d7e13e.png)
Substituindo

vem:

= 16 ? q = 4 ou q = -4 ( não convém, pois devemos ter q > 0 )
O primeiro termo é dado por:

Como a_1 = 2, q = 4, n = 5, temos: a_1+ q +n=11
-
solon
- Novo Usuário

-
- Mensagens: 8
- Registrado em: Ter Jul 14, 2015 02:02
- Formação Escolar: GRADUAÇÃO
- Área/Curso: matemática
- Andamento: formado
Voltar para Progressões
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Progressões
por Cleyson007 » Sáb Set 26, 2009 19:23
- 3 Respostas
- 9088 Exibições
- Última mensagem por shirata

Seg Out 05, 2009 12:18
Progressões
-
- Progressões
por Marcos Roberto » Sáb Out 15, 2011 21:57
- 0 Respostas
- 1450 Exibições
- Última mensagem por Marcos Roberto

Sáb Out 15, 2011 21:57
Progressões
-
- Progressões
por zenildo » Qui Out 10, 2013 22:54
- 1 Respostas
- 1848 Exibições
- Última mensagem por Cleyson007

Sex Out 11, 2013 15:27
Progressões
-
- Progressões
por verilane souza » Ter Set 30, 2014 16:32
- 1 Respostas
- 1984 Exibições
- Última mensagem por fff

Ter Set 30, 2014 18:22
Progressões
-
- progressões
por solon » Ter Jul 21, 2015 01:56
- 2 Respostas
- 5018 Exibições
- Última mensagem por solon

Ter Jul 21, 2015 12:43
Progressões
Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes
Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 09:10
Veja este exercício:
Se A = {

} e B = {

}, então o número de elementos A

B é:
Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?
A resposta é 3?
Obrigado.
Assunto:
método de contagem
Autor:
Molina - Seg Mai 25, 2009 20:42
Boa noite, sinuca.
Se A = {

} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é
A = {1, 2, 4, 5, 10, 20}
Se B = {

} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é
B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...
Feito isso precisamos ver os números que está em ambos os conjuntos, que são:
5, 10 e 20 (3 valores, como você achou).
Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?
sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x
A resposta é 3? Sim, pelo menos foi o que vimos a cima
Bom estudo,

Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 23:35
Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.
Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:
Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?
Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.