por solon » Qui Jul 23, 2015 17:57
seja (a1, a2, ..., an) uma progressão geométrica com um número ímpar de termos e razão q>0. O produto de seus termos é igual a 2^25 e o termo do meio é 2^5. Se a soma dos (n-1) primeiros termos é igual a 2(1+q)(1+q^2), então :
a) a1 + q =16
b) a1 + q =12
c) a1 + q = 10
d) a1 + q + n = 20
e) a1 + q + n = 11
-
solon
- Novo Usuário

-
- Mensagens: 8
- Registrado em: Ter Jul 14, 2015 02:02
- Formação Escolar: GRADUAÇÃO
- Área/Curso: matemática
- Andamento: formado
por solon » Qui Jul 30, 2015 20:03
Como n é ímpar, então o termo do meio é ? a?_((n+1)/2).Digite a equação aqui.
A P.G. proposta é do tipo a_(1,) a_2, ..., a_((n+1)/2) , ..., a_n), (com razão q > 0.
Aplicando uma das propriedades da P.G., temos:
a_((n+1)/2 =) ?(a_1.a_(n ) ) ? a_1.a_n =??(? a?_((n+1)/2) )^2 ? ? a_1.a_n = (? 2 ?^5 )^2 ? a_1.a_n = 2^10
O produto dos n primeiros termos da P.G. (a_(1,) a_2, ..., a_((n+1)/2) , ..., n ), é dado por P_n= ?((?a_(1 ).a_n )?^n ) .
Substituindo P_n por 2^25 e a_1. a_n por 2^10 , vem:
P_n = ?((?a_(1 ).a_n)?^n ) ?2^25 = ?((??2^10?_ )?^n ) ? 2^25 = ?((??2^n?_ )?^10 ) ? 2^25 =? (2 ?^n )^5 ?
2^25 = 2^5n ? 5n = 25 ? n = 5
A soma dos (n – 1) primeiros termos dessa P.G. é dada por 2 ? ( 1 + q ) ? (1 + q^2 )
Como n = 5, o termo do meio é o terceiro, isto é:
a_3 = a_1? q^2 ? a_1 = a_3/q^2 ? a_(1 )= 32/q^2
Segue que:
S_4 = (a_1 ? ( q^4 -1 ))/(( q-1 )) ? S_4 = (32 ? [(q^2 )^2 -1 ])/(q^2 ? (q-1)) ? S_4 = (32 ?(q^2-1) ? (q^2-1))/(q^2 ? (q-1) ) ? S_4 = (32 ?(q^2+ 1) ? (q+1) ? (q-1))/(q^2 ? (q-1) )
Substituindo S_4 por 2? (1+q)? (1+ q^2 ), vem:
2 ? (1+q)? (1+q^2 ) = (32 ? (q^2+ 1) ? (q + 1) ? (q - 1))/(q^2 ? (q -1) ) ? 32/q^2 = 2 ? q^2 = 16 ? q = 4 ou q = -4 ( não convém, pois devemos ter q > 0 )
O primeiro termo é dado por: a_1 = 32/q^2 ? a_1 = 32/q^2 ? a_1 = 32/4^2 ? a_1 = 2
Como a_1 = 2, q = 4, n = 5, temos: a_1+ q +n=11
-
solon
- Novo Usuário

-
- Mensagens: 8
- Registrado em: Ter Jul 14, 2015 02:02
- Formação Escolar: GRADUAÇÃO
- Área/Curso: matemática
- Andamento: formado
por solon » Sáb Ago 01, 2015 03:48
Como n é ímpar, então o termo do meio é

.
A P.G. proposta é do tipo

, (com razão q > 0.
Aplicando uma das propriedades da P.G., temos:
O produto dos n primeiros termos da P.G.

, é dado por
^{n}. P_n = \sqrt[]({{a}_{1}.{a}_{n}})^{n}.](/latexrender/pictures/9089f1edffbbc7dbbf385ef01a8f3008.png)
.
Substituindo P_n por

e

, vem:
A soma dos (n – 1) primeiros termos dessa P.G. é dada por 2 ? ( 1 + q ) ? (1 + q^2 )
Como n = 5, o termo do meio é o terceiro, isto é:
Segue que:
![{s}_{4} = \frac{{a}_{1\left({q}^{4}-1 \right)}}{\left(q-1 \right)}\rightarrow{s}_{4} = \frac{32\left[\left({{q}^{2}} \right)^{2}-1 \right]}{{q}^{2}.\left(q-1 \right)}\rightarrow{s}_{4} = \frac{32\left({q}^{2}-1 \right).\left({q}^{2}-1 \right)}{{q}^{2}.\left(q-1 \right)}\rightarrow{s}_{4} = \frac{32\left({q}^{2}+1).\left(q+1 \right).\left(q-1 \right) \right)}{{q}^{2}.\left(q-1 \right)} {s}_{4} = \frac{{a}_{1\left({q}^{4}-1 \right)}}{\left(q-1 \right)}\rightarrow{s}_{4} = \frac{32\left[\left({{q}^{2}} \right)^{2}-1 \right]}{{q}^{2}.\left(q-1 \right)}\rightarrow{s}_{4} = \frac{32\left({q}^{2}-1 \right).\left({q}^{2}-1 \right)}{{q}^{2}.\left(q-1 \right)}\rightarrow{s}_{4} = \frac{32\left({q}^{2}+1).\left(q+1 \right).\left(q-1 \right) \right)}{{q}^{2}.\left(q-1 \right)}](/latexrender/pictures/618d67a08ac357403df758e435d7e13e.png)
Substituindo

vem:

= 16 ? q = 4 ou q = -4 ( não convém, pois devemos ter q > 0 )
O primeiro termo é dado por:

Como a_1 = 2, q = 4, n = 5, temos: a_1+ q +n=11
-
solon
- Novo Usuário

-
- Mensagens: 8
- Registrado em: Ter Jul 14, 2015 02:02
- Formação Escolar: GRADUAÇÃO
- Área/Curso: matemática
- Andamento: formado
Voltar para Progressões
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Progressões
por Cleyson007 » Sáb Set 26, 2009 19:23
- 3 Respostas
- 9114 Exibições
- Última mensagem por shirata

Seg Out 05, 2009 12:18
Progressões
-
- Progressões
por Marcos Roberto » Sáb Out 15, 2011 21:57
- 0 Respostas
- 1458 Exibições
- Última mensagem por Marcos Roberto

Sáb Out 15, 2011 21:57
Progressões
-
- Progressões
por zenildo » Qui Out 10, 2013 22:54
- 1 Respostas
- 1897 Exibições
- Última mensagem por Cleyson007

Sex Out 11, 2013 15:27
Progressões
-
- Progressões
por verilane souza » Ter Set 30, 2014 16:32
- 1 Respostas
- 2032 Exibições
- Última mensagem por fff

Ter Set 30, 2014 18:22
Progressões
-
- progressões
por solon » Ter Jul 21, 2015 01:56
- 2 Respostas
- 5066 Exibições
- Última mensagem por solon

Ter Jul 21, 2015 12:43
Progressões
Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
zig - Sex Set 23, 2011 13:57
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}](/latexrender/pictures/19807748a214d3361336324f3e43ea9a.png)
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}](/latexrender/pictures/3d7908e5b4e397bf635b6546063d9130.png)
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
Vennom - Sex Set 23, 2011 21:41
zig escreveu:![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}](/latexrender/pictures/19807748a214d3361336324f3e43ea9a.png)
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}](/latexrender/pictures/3d7908e5b4e397bf635b6546063d9130.png)
Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo:
Então pense o seguinte: a fração geratriz de 0,05 é

, ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja:
A raiz quadrada de vinte, você acha fácil, né?
Espero ter ajudado.
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
fraol - Dom Dez 11, 2011 20:23
Nós podemos simplificar, um pouco,

da seguinte forma:

.
É isso.
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
fraol - Dom Dez 11, 2011 20:24
Nós podemos simplificar, um pouco,

da seguinte forma:

.
É isso.
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.