• Anúncio Global
    Respostas
    Exibições
    Última mensagem

questão

questão

Mensagempor sirle ignes » Seg Mar 08, 2010 23:46

Professor, estou a dias tentando resolver esse problema, montei ate um esquema desenhado e sempre chego na resposta de 1311 sendo assim não consigo chegar na resposta do gabarito. por gentileza me ajuda. Segue a questão

10 m 1,5 m 1,5 m 1,5 m 1,5 m
1ª 2ª 3ª 4ª 50ª 51ª Torneira
3
Em um caminho retilíneo há um canteiro formado por
51 roseiras, todas enfileiradas ao longo do caminho, como
ilustrado. A distância entre quaisquer duas roseiras conse-
cutivas é 1,5 m. Nesse caminho, há ainda uma torneira a
10,0 m da primeira roseira.
Gabriel decide molhar todas as roseiras desse caminho. Para
isso, utiliza um regador que, quando cheio, tem capacidade
para molhar 3 roseiras.
Dessa forma, Gabriel enche o regador na torneira, encaminha-se
para a 1a
roseira, molha-a, caminha até a 2a
roseira,
molha-a e, a seguir, caminha até a 3a
roseira, molhando-a
também, esvaziando o regador. Cada vez que o regador fica
vazio, Gabriel volta à torneira, enche o regador e repete a
rotina anterior para as três roseiras seguintes. No momento
em que acabar de regar a última das roseiras, quantos metros
Gabriel terá percorrido ao todo desde que encheu o regador
pela primeira vez?
(A) 1666,0 (B) 1581,0
(C) 1496,0 (D) 833,0
(E) 748,0
sirle ignes
Novo Usuário
Novo Usuário
 
Mensagens: 9
Registrado em: Seg Mar 08, 2010 23:18
Formação Escolar: GRADUAÇÃO
Área/Curso: Administração
Andamento: formado

Re: questão

Mensagempor Douglasm » Ter Mar 09, 2010 09:40

Olá sirle ignes. Vamos analisar o problema como uma progressão aritmética. Comecemos contando a primeira viagem (ida e volta), ela é de 10m + 1,5m + 1,5m = 13m (x 2) = 26m ; Deste modo vemos que a viagem feita para molhar as três primeiras roseiras e voltar até a torneira foi de 26m. Agora vamos considerar a viagem para as três próximas roseiras:
13m + 1,5m + 1,5 m + 1,5m = 17,5m (x2) = 35m. Se continuarmos contando deste modo, vemos que, cada vez que se passa para as 3 próxima roseiras, a distância na ida e na volta cresce 9m. Vamos montar a progressão:

a_1 = 26m ; a_2 = 26 + 9 = 35m ; a_3 = 26 + 2.9 = 44m (...) a_n = 26 + 9(n-1)

Facilmente percebemos que para molhar 51 roseiras são feitas 17 viagens, logo o último termo da nossa progressão será o a_{17}.

a_{17} = 26 + 9(16) = 170m

Sabendo o primeiro termo, o último termo e o número de termos, calculamos a soma pela fórmula:

S = \frac{a_{1} + a_{17}}{2} . 17 \therefore S = \frac{26 + 170}{2} . 17 = 1666m

Mas não nos precipitemos! O resultado obtido foi considerando ida e volta, deste modo acabamos por contar também a volta na última viagem. O problema só pede a distância até a última roseira, logo devemos descontar a volta, que é dada por 170/2 = 85. Assim temos:

1666 - 85 = 1581m Letra B

Espero que seja isso. Até a próxima.
Avatar do usuário
Douglasm
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 270
Registrado em: Seg Fev 15, 2010 10:02
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: questão

Mensagempor sirle ignes » Ter Mar 09, 2010 17:32

Douglas muito obrigada pela ajuda, eu estava considerando não os 4,5 m e sim somente 3 m, então por isso não conseguia fechar. Valeu, nem acredito que alguém me ajudou.
sirle ignes
Novo Usuário
Novo Usuário
 
Mensagens: 9
Registrado em: Seg Mar 08, 2010 23:18
Formação Escolar: GRADUAÇÃO
Área/Curso: Administração
Andamento: formado


Voltar para Progressões

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 5 visitantes

 



Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 09:10

Veja este exercício:

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} e B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z}, então o número de elementos A \cap B é:

Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.

Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?

No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?

A resposta é 3?

Obrigado.


Assunto: método de contagem
Autor: Molina - Seg Mai 25, 2009 20:42

Boa noite, sinuca.

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é A = {1, 2, 4, 5, 10, 20}

Se B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...

Feito isso precisamos ver os números que está em ambos os conjuntos, que são: 5, 10 e 20 (3 valores, como você achou).

Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?

sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x

A resposta é 3? Sim, pelo menos foi o que vimos a cima


Bom estudo, :y:


Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 23:35

Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.

Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:

Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?

Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?