por Larissabueno » Dom Ago 03, 2014 11:01
O nono termo de uma PG é 162 e a razão é 3. obetenha a1

-
Larissabueno
- Novo Usuário

-
- Mensagens: 6
- Registrado em: Sáb Ago 02, 2014 19:01
- Formação Escolar: ENSINO MÉDIO
- Andamento: cursando
por jcmatematica » Seg Ago 04, 2014 22:07
Larissabueno escreveu:O nono termo de uma PG é 162 e a razão é 3. obetenha a1

a9 = 162
q = 3
a1 = ?
an =a1.q^(n-1)
a9 = a1.3^(9-1)
162 = a1.3^8
162 = a1.6561
162/6561 = a1
-
jcmatematica
- Usuário Dedicado

-
- Mensagens: 46
- Registrado em: Ter Jul 29, 2014 23:36
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em matematica
- Andamento: formado
Voltar para Progressões
Usuários navegando neste fórum: Nenhum usuário registrado e 10 visitantes
Assunto:
[Função] do primeiro grau e quadratica
Autor:
Thassya - Sáb Out 01, 2011 16:20
1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?
2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?
3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?
Assunto:
[Função] do primeiro grau e quadratica
Autor:
Neperiano - Sáb Out 01, 2011 19:46
Ola
Qual as suas dúvidas?
O que você não está conseguindo fazer?
Nos mostre para podermos ajudar
Atenciosamente
Assunto:
[Função] do primeiro grau e quadratica
Autor:
joaofonseca - Sáb Out 01, 2011 20:15
1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.
Em

substitui-se
m, substitui-se
y e
x por um dos pares ordenados, e resolve-se em ordem a
b.
2)Na equação

não existem zeros.Senão vejamos
Completando o quadrado,
As coordenadas do vertice da parabola são
O eixo de simetria é a reta

.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.
f(-7)=93
f(10)=59
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.