• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Problema com palitos rs

Problema com palitos rs

Mensagempor kandara » Sex Abr 04, 2014 16:03

Gente eu comecei a estudar P.A hoje, não achei tão difícil e até gostei de fazer alguns exercícios! Mas tem um aqui que está me matando... E eu sinto que não é tão difícil assim... Pois bem, o enunciado é esse:

Imagem


Eu tentei aplicar a fórmula da P.A nisso aí e ficou:

a1 = 4 (ele mesmo me deu a dica né)
an = ?
n = 250
r = (não sei se boto 1 que é o número de quadrados para cada quatro palitos, ou 4 que são os quatro palitos para cada quadrado)

Então com a fórmula:

an = a1+(n-1)r

ficou:

an = 4+(250-1).4 (primeira tentativa)
an= 4+ 996
an = 1000

Mas ele fez 1000 quadrados com 250 palitos? Isso não faz sentindo!

Então fiz a segunda tentativa:

an = 4+(250-1).1
an = 4+ 249
an = 253

De novo não faz sentido! Eu realmente não sei onde estou errando! Pode ser que o an não seja o que eu devo encontrar ou que devo fazer alguma conversão que eu não sei onde é, ou essa fórmula nem serve para o que eu preciso, mas queria que alguém me ajudasse com isto!
kandara
Novo Usuário
Novo Usuário
 
Mensagens: 4
Registrado em: Sex Abr 04, 2014 15:19
Formação Escolar: EJA
Andamento: cursando

Re: Problema com palitos rs

Mensagempor Russman » Sáb Abr 05, 2014 01:06

Você começou bem! Apenas confundiu as notações para as quantidades. O número n é a quantidade de quadrados e o a_n é a quantidade de palitos usados para formar n quadrados.

Com 4 palitos a criança fez 1 quadrado. Então a_1 = 4. Agora, para fazer 2 quadrados ela teve de usar quantos palitos? Foram 7 palitos(basta contar na figura). Assim, a_2 = 7. Para 3 quadrados foram 10 palitos. Daí, a_3 = 10. Seguindo a progressão você, facilmente, percebe que devem ser acrescentados sempre mais 3 palitos a configuração anterior para obter-se mais um quadrado. Portanto, r=3.

Assim, a quantidade de palitos a_n para o n-ésimo quadrado é

a_n = 4+(n-1)*3 = 4 + 3n - 3 = 1+3n.

Se a criança pretende usar 250 palitos, então formará n quadrados tal que

a_{n} = 250.

Logo,

1 + 3*n = 250 \Rightarrow n = \frac{250-1}{3} = 83.

Com 250 palitos a criança formará 83 quadrados.
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado


Voltar para Progressões

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Princípio da Indução Finita
Autor: Fontelles - Dom Jan 17, 2010 14:42

Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?
2n \geq n+1 ,\forall n \in\aleph*
O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois 2.1 \geq 1+1
2°) Admitamos que P(k), k \in \aleph*, seja verdadeira:
2k \geq k+1 (hipótese da indução)
e provemos que 2(k+1) \geq (K+1)+1
Temos: (Nessa parte)
2(k+1) = 2k+2 \geq (k+1)+2 > (k+1)+1


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Seg Jan 18, 2010 01:55

Boa noite Fontelles.

Não sei se você está familiarizado com o Princípio da Indução Finita, portanto vou tentar explicar aqui.

Ele dá uma equação, no caso:

2n \geq n+1, \forall n \in \aleph^{*}

E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:

2*1 \geq 1+1

Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que k seja verdadeiro, e pretendemos provar que também é verdadeiro para k+1.

\mbox{Suponhamos que P(k), }k \in \aleph^{*},\mbox{ seja verdadeiro:}
2k \geq k+1

\mbox{Vamos provar que:}
2(k+1) \geq (k+1)+1

Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.

Espero ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Fontelles - Seg Jan 18, 2010 02:28

Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!


Assunto: Princípio da Indução Finita
Autor: Fontelles - Qui Jan 21, 2010 11:32

Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Jan 21, 2010 12:25

Boa tarde Fontelles!

Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.

O que temos que provar é isso: 2(k+1) \geq (k+1)+1, certo? O autor começou do primeiro membro:

2(k+1)= 2k+2

Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:

2k+2 \geq (k+1)+2

Que é outra verdade. Agora, com certeza:

(k+1)+2 > (k+1)+1

Agora, como 2(k+1) é \geq a (k+1)+2, e este por sua vez é sempre > que (k+1)+1, logo:

2(k+1) \geq (k+1)+1 \quad \mbox{(c.q.d)}

Inclusive, nunca é igual, sempre maior.

Espero (dessa vez) ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Caeros - Dom Out 31, 2010 10:39

Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?


Assunto: Princípio da Indução Finita
Autor: andrefahl - Dom Out 31, 2010 11:37

c.q.d. = como queriamos demonstrar =)


Assunto: Princípio da Indução Finita
Autor: Abelardo - Qui Mai 05, 2011 17:33

Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Mai 05, 2011 20:05

Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.


Assunto: Princípio da Indução Finita
Autor: Vennom - Qui Abr 26, 2012 23:04

MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.

Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa. :-D