• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Fuvest

Fuvest

Mensagempor Maria Livia » Qua Abr 17, 2013 18:22

Os números 1,3,5,10,15,.... São chamados de números triangulares, nomenclatura esta justiocada pela sequmcia de triangulos.
A) Determinar uma expressão algébrica para o n-esimo número triangular
B) Provar que o quadrado de todo número inteiro maior que 1 é a soma de dois números triangulares consecutivos
Maria Livia
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 79
Registrado em: Seg Ago 13, 2012 13:03
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: Fuvest

Mensagempor young_jedi » Qua Abr 17, 2013 21:30

a sequencia na verdade seria
(1,3,6,10,15...)

a)

temos que os numeros triangulares formam triangulos onde o numero de pontos de uma linha é 1 mais que da anterior
por exemplo pra 10
temos que na prirmeira linha temos 1 ponto, na segunda 2, na terceira 3, na quarta 4.
somoando tudo temos 1+2+3+4=10 que é exatamente o quarto termo da sequencia, ou seja é uma progressão aritimetica de razão 1 onde na n-esima linha temos n pontos, ou seja o n-esimo termo é a somatoria desta PA de razão 1 ate n ou seja

\frac{(n+1)n}{2}

b)

um numero x qualquer ao quadrado por ser escrito como

x^2=\frac{x^2}{2}+\frac{x^2}{2}

x^2=\frac{x^2}{2}+\frac{x}{2}+\frac{x^2}{2}-\frac{x}{2}

x^2=\frac{(x+1)x}{2}+\frac{x(x-1)}{2}

x^2=\frac{(x+1)x}{2}+\frac{(x-1+1)(x-1)}{2}

x^2=\frac{(x+1)x}{2}+\frac{[(x-1)+1](x-1)}{2}

temos ai o numero triangulo x-1 e o consecutivo x
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado


Voltar para Progressões

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.