por Lucio » Ter Out 30, 2012 08:12
Olas colegas...
Se enumeram de 1 até n as páginas de um livro. Ao somar esses números, por engano, um deles é somado
duas vezes, obtendo-se o resultado incorreto: 1986. O valor de n e o número da página que foi
somado duas vezes são?
1º - Tentei por soma de PA, não consegui;
2º - Tentei pela fórmula =

pois é um número triangular,
percebi que estava trabalhando com a soma de PA e não cheguei ao resultado.
Será que tem um outro caminho para a resolução?
Desde já agradeço a atenção de todos
Abraços
-
Lucio
- Usuário Dedicado

-
- Mensagens: 29
- Registrado em: Qua Dez 21, 2011 07:15
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática
- Andamento: cursando
por Cleyson007 » Ter Out 30, 2012 09:40
A sequência das páginas do livro formam uma P.A de n termos e 1°termo igual a 1. Logo:
S = (n² + n)/2
Considerando que não houvesse a inclusão do número repetido, teríamos:
(n² + n)/2 = 1686
n² + n = 2 (1686) = 3372
n² + n - 3372 = 0
Por Bháskara, temos:
? = 1² - 4*(-3372) = 1 + 13488 = 13489
?? = ?13489 = ±116,14...
Pelo fato de ter tido acréscimo do número repetido, vemos que ?? deverá ser 116 ou 115. Logo:
n = (-1 + 116)/2 ou (-1 + 115)/2
Cujos resultados seriam
n = 115/2 ou 114/2.
Ora, o primeiro deles não serve, pois resultaria em um "n" fracionário; logo,
n = 114/2
n = 57
Quanto ao número da página que foi somado duas vezes:
S = (1 + 57)*57/2 = 58*57/2 = 58/2 * 57 = 29*57 = 1653
1686 - 1653 = 33
Solução:
n = 57
nº da página = 33
-

Cleyson007
- Colaborador Voluntário

-
- Mensagens: 1228
- Registrado em: Qua Abr 30, 2008 00:08
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Matemática UFJF
- Andamento: formado
por young_jedi » Ter Out 30, 2012 11:57
eu encontrei como resposta n=62

temos que

portanto o livro pode ter 62 paginas e ter somando por engano duas vezes a pagina 33
Na resposta do Cleyson ele utilizou 1686 mais o correto é 1986 mais o procedimento para se chegar na resposta é esse mesmo
-
young_jedi
- Colaborador Voluntário

-
- Mensagens: 1239
- Registrado em: Dom Set 09, 2012 10:48
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica - UEL
- Andamento: formado
por Lucio » Ter Out 30, 2012 13:13
Cleyson007 e Young_jedi.
Muito obrigado pelo apoio.
Abraços.
-
Lucio
- Usuário Dedicado

-
- Mensagens: 29
- Registrado em: Qua Dez 21, 2011 07:15
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática
- Andamento: cursando
Voltar para Progressões
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- (UNIFOR) Progressão Aritmética e Progressão Harmônica
por andersontricordiano » Ter Mar 22, 2011 12:56
- 1 Respostas
- 6009 Exibições
- Última mensagem por LuizAquino

Ter Mar 22, 2011 13:52
Progressões
-
- Progressão aritmética e progressão geométrica
por Danilo Dias Vilela » Sex Mar 12, 2010 13:41
- 1 Respostas
- 4598 Exibições
- Última mensagem por thadeu

Sex Mar 12, 2010 17:36
Progressões
-
- [Aritmética] Progressão Aritmética.
por Pessoa Estranha » Qua Ago 28, 2013 22:11
- 2 Respostas
- 5478 Exibições
- Última mensagem por Pessoa Estranha

Qui Ago 29, 2013 16:06
Aritmética
-
- Progressão Aritmética
por Rejane Sampaio » Qua Set 17, 2008 16:20
- 1 Respostas
- 4326 Exibições
- Última mensagem por juliomarcos

Qui Set 18, 2008 13:07
Álgebra Elementar
-
- Progressão Aritmética (PA)
por Cleyson007 » Ter Jan 27, 2009 21:40
- 2 Respostas
- 8264 Exibições
- Última mensagem por Cleyson007

Sáb Mai 30, 2009 12:31
Progressões
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
Taxa de variação
Autor:
felipe_ad - Ter Jun 29, 2010 19:44
Como resolvo uma questao desse tipo:
Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?
A letra (a) consegui resolver e cheguei no resultado correto de

Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é
Alguem me ajuda? Agradeço desde já.
Assunto:
Taxa de variação
Autor:
Elcioschin - Qua Jun 30, 2010 20:47
V = (1/3)*pi*r²*h ----> h = 4r/3
V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³
Derivando:
dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3
Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s
Assunto:
Taxa de variação
Autor:
Guill - Ter Fev 21, 2012 21:17
Temos que o volume é dado por:
Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:
Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.