• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Progressão geometrica 3

Progressão geometrica 3

Mensagempor DanielRJ » Seg Out 04, 2010 15:28

Oá pessoal to com uma dificuldade nesta questão fiz varias e varias vezes e não obtive êxito.

(UECE) Seja ( a1 , a2 , a3 ,.....) uma progressão geometrica crescente. Sea_1=\frac{2}{3} e \frac{a_1+a_2+a_3+a_4}{a_1+a_2}=5, então a_6-a_2 é igual a:

a)14/3
b)28/3
c)10
d)20

Bom é isso pelos meus calculos aqui cheguei a esta expressãoo calculo da razão, então eria sabe onde cometi um equivoco:

2q^3+2q^2-8q-8=0

q(2q^2+2q-8)-8=0

q=8 , \not {q=\not 0} , \not q=\not 0 , \not q=\not -1

como é crescente q=8
Avatar do usuário
DanielRJ
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 254
Registrado em: Sex Ago 20, 2010 18:19
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: Progressão geometrica 3

Mensagempor MarceloFantini » Seg Out 04, 2010 18:15

Se é uma progressão geométrica crescente, então q > 1. Essa informação será importante. Pelos dados do enunciado, temos que:

a_1 = \frac{2}{3}

\frac{S_4}{S_2} = 5

Vamos expandir a segunda equação:

S_4 = \frac{a_1 \cdot (q^4 -1)}{q - 1}

S_2 = \frac{a_1 \cdot (q^2 -1)}{q - 1}

\frac{S_4}{S_2} = \frac{ \frac{a_1 \cdot (q^4 -1)}{q - 1} } { \frac{a_1 \cdot (q^2 -1)}{q - 1} } = \frac {q^4 -1}{q^2 -1} = \frac{(q^2 +1)(q^2 -1)}{q^2 -1} = q^2 +1 = 5

Logo, q = 2.

Portanto, a_6 - a_2 = a_1 \cdot q^5 - a_1 \cdot 1 = a_1 q (q^4 -1) = \frac{2}{3} \cdot 2 \cdot (2^4 -1) = \frac{4}{3} \cdot 15 = \frac{4}{3} \cdot 3 \cdot 5 = 20

Alternativa D.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Progressão geometrica 3

Mensagempor DanielRJ » Seg Out 04, 2010 22:44

Fantini escreveu:Se é uma progressão geométrica crescente, então q > 1. Essa informação será importante. Pelos dados do enunciado, temos que:

a_1 = \frac{2}{3}

\frac{S_4}{S_2} = 5

Vamos expandir a segunda equação:

S_4 = \frac{a_1 \cdot (q^4 -1)}{q - 1}

S_2 = \frac{a_1 \cdot (q^2 -1)}{q - 1}

\frac{S_4}{S_2} = \frac{ \frac{a_1 \cdot (q^4 -1)}{q - 1} } { \frac{a_1 \cdot (q^2 -1)}{q - 1} } = \frac {q^4 -1}{q^2 -1} = \frac{(q^2 +1)(q^2 -1)}{q^2 -1} = q^2 +1 = 5

Logo, q = 2.

Portanto, a_6 - a_2 = a_1 \cdot q^5 - a_1 \cdot 1 = a_1 q (q^4 -1) = \frac{2}{3} \cdot 2 \cdot (2^4 -1) = \frac{4}{3} \cdot 15 = \frac{4}{3} \cdot 3 \cdot 5 = 20

Alternativa D.


Bom obrigado. eu peguei as duas somas coloquei tudo em função de A1 e expandi. porque o resultado tambem não saiu correto?
Avatar do usuário
DanielRJ
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 254
Registrado em: Sex Ago 20, 2010 18:19
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: Progressão geometrica 3

Mensagempor MarceloFantini » Seg Out 04, 2010 22:58

Não entendi o que você quer dizer. Pode dar a dedução inteira?
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Progressão geometrica 3

Mensagempor DanielRJ » Seg Out 04, 2010 23:26

Fantini escreveu:Não entendi o que você quer dizer. Pode dar a dedução inteira?


Assim:

a_1+a_2+a_3+a_4

a_1+a_1.q+a_1.q^2+a_1.q^3

e depois substitui os a_1 então queria saber porque não deu certo.
Avatar do usuário
DanielRJ
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 254
Registrado em: Sex Ago 20, 2010 18:19
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: Progressão geometrica 3

Mensagempor MarceloFantini » Ter Out 05, 2010 00:00

teVeja se o que você tentou foi isso:

\frac{a_1 + a_2 + a_3 + a_4}{a_1 + a_2} = \frac{a_1 + a_1 \cdot q + a_1 \cdot q^2 + a_1 \cdot q^3}{a_1 + a_1 \cdot q} = \frac{a_1 \cdot (1 + q + q^2 + q^3)}{a_1 \cdot (1 + q)} = \frac{1 + q + q^2 + q^3}{1 + q} = 5 \rightarrow q^3 + q^2 -4q -4 = 0 \rightarrow q^2 \cdot (q +1) - 4 \cdot (q+1) = 0 \rightarrow (q^2 -4) \cdot (q+1) = 0

Daí, tiramos que q=-1, q=-2 ou q=2. Como a progressão é crescente, a única possibilidade é q=2. Foi isso que você fez, ou que queria ter feito?
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Progressão geometrica 3

Mensagempor DanielRJ » Ter Out 05, 2010 01:18

Fantini escreveu:teVeja se o que você tentou foi isso:

\frac{a_1 + a_2 + a_3 + a_4}{a_1 + a_2} = \frac{a_1 + a_1 \cdot q + a_1 \cdot q^2 + a_1 \cdot q^3}{a_1 + a_1 \cdot q} = \frac{a_1 \cdot (1 + q + q^2 + q^3)}{a_1 \cdot (1 + q)} = \frac{1 + q + q^2 + q^3}{1 + q} = 5 \rightarrow q^3 + q^2 -4q -4 = 0 \rightarrow q^2 \cdot (q +1) - 4 \cdot (q+1) = 0 \rightarrow (q^2 -4) \cdot (q+1) = 0

Daí, tiramos que q=-1, q=-2 ou q=2. Como a progressão é crescente, a única possibilidade é q=2. Foi isso que você fez, ou que queria ter feito?


è foi isso mesmo percebi que coloquei em evidencia erradamente obrigado ¬¬
Avatar do usuário
DanielRJ
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 254
Registrado em: Sex Ago 20, 2010 18:19
Formação Escolar: ENSINO MÉDIO
Andamento: formado


Voltar para Progressões

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}