• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Progressão Geométrica, envolvendo nºs complexos

Progressão Geométrica, envolvendo nºs complexos

Mensagempor Loretto » Sáb Out 02, 2010 22:10

Dado o complexo z = -?2 / 2 + i?2/2 , calcule :

c) 1 + z + z² + z^3 + ....+ z^23

Tentei jogar na forma trigonométrica, mas calcule z^20 e depois z^3 , assim :

Rô = ? ( -?2/2 )^2 + (?2/2)^2
Rô = ?1/2 + 1/2 = ?1 = 1

Z^n = 1^n . ( cos (-n.?/4) + i.sen ?/4)
Z^20 = 1^20.[ cos (-20?/4) + i.sen (20?/4)]
Z^20 = -1 + 0.i
Agora, calculando Z^3

Z^3 = 1^3.[cos (3?/4) + i.sen (3?/4)]
Z^3 = -?2 / 2 + i?2/2
Assim, Z^20 . Z^3 = Z^23

(-1 + 0.i) . (-?2 / 2 + i?2/2) = ?2 / 2 - i?2/2
Passando para a Fórmula da SOMA GERAL DA P.G. :

Sn = a1 . (q^n - 1) / (q - 1)
S23 = Z. (Z^22 - 1) / (Z - 1)
S23 = (-?2 / 2 + i?2/2) . (1i - 1) / (-?2 / 2 - 1 + i?2/2)
S23 = (-?2 / 2 + i?2/2) . (1i - 1) / (-?2 -2 / 2 + i?2/2)
S23 = -?2i / ( -?2 -2 / 2 + i?2/2)
S23 = (0/-?2 -2 / 2) + ( -?2i / i?2/2)
S23 = - 1/2

1 + S23 = 1 - 1/2 = 1/2
Loretto
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 28
Registrado em: Dom Jul 25, 2010 01:35
Formação Escolar: ENSINO MÉDIO
Área/Curso: exatas
Andamento: cursando

Re: Progressão Geométrica, envolvendo nºs complexos

Mensagempor Elcioschin » Seg Out 04, 2010 12:43

Refazendo suas contas:

O termo real de z é - V2/2

z = - V2/2 + i*V2/2 ----> z = cos135º + i*sen135º

z^23 = cos(23*135º) + i*sen(23*135º) ----> z^23 = cos3105º + i*sen3105º ----> z^23 = cos225º + i*sen225º ----> z^23 = - V2/2 - i*V2/2

Continue a partir daí
Elcioschin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 624
Registrado em: Sáb Ago 01, 2009 10:49
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: formado


Voltar para Progressões

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: (FGV) ... função novamente rs
Autor: my2009 - Qua Dez 08, 2010 21:48

Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :


Assunto: (FGV) ... função novamente rs
Autor: Anonymous - Qui Dez 09, 2010 17:25

Uma função de 1º grau é dada por y=ax+b.
Temos que para x=3, y=6 e para x=4, y=8.
\begin{cases}6=3a+b\\8=4a+b\end{cases}
Ache o valor de a e b, monte a função e substitua x por 10.


Assunto: (FGV) ... função novamente rs
Autor: Pinho - Qui Dez 16, 2010 13:57

my2009 escreveu:Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :



f(x)= 2.x
f(3)=2.3=6
f(4)=2.4=8
f(10)=2.10=20


Assunto: (FGV) ... função novamente rs
Autor: dagoth - Sex Dez 17, 2010 11:55

isso ai foi uma questao da FGV?

haahua to precisando trocar de faculdade.


Assunto: (FGV) ... função novamente rs
Autor: Thiago 86 - Qua Mar 06, 2013 23:11

Saudações! :-D
ví suaquestão e tentei resolver, depois você conta-me se eu acertei.
Uma função de 1º grau é dada por y=3a+b

Resposta :
3a+b=6 x(4)
4a+b=8 x(-3)
12a+4b=24
-12a-3b=-24
b=0
substituindo b na 1°, ttenho que: 3a+b=6
3a+0=6
a=2
substituindo em: y=3a+b
y=30+0
y=30
:coffee: