• Anúncio Global
    Respostas
    Exibições
    Última mensagem

P.A de razão sendo outra P.A, ajuda

P.A de razão sendo outra P.A, ajuda

Mensagempor MariMari » Qui Set 30, 2010 18:55

Bom pessoal, essa é a minha primeira experiência com o fórum, boa tarde :)
Avancei um pouco nessa questão, porem não tive muito sucesso em alguns pontos.

Números naturais ímpares estão dispostos dessa forma

1
3 5
7 9 11
13 15 17 19
21 23 25 27 29

O número que inicia a 51ª linha é ?
(A) 2549 (B) 2551 (C) 2553 (D) 2555 (E) 2547

Bom, cheguei a conclusão de que essa primeira linha esta em progressão aritmética de razão igual a outra progressão aritmética.

{A}_{n}={A}_{1}+\left[\left(n-1 \right)\left({A}_{1*}+\left[n-2 \right]{r}_{*} \right) \right]
r={A}_{1*}+\left[n-2 \right]{r}_{*}

Num momento de quase inércia mental, eu tive um presságio sobre essa razão. Pensei '' na segunda P.A o correto será n-2 ao invés de n-1''
Isso está correto?

Mas voltando... Observando e aplicando essa resolução a valores já conhecidos por mim, já mostrados nessa disposição dos números, percebi que se trocasse r={A}_{1*}+\left[n-2 \right]{r}_{*} por apenas o n da equação '' base '', daria o valor que eu queria achar, ficando assim:

n=r

{A}_{n}={A}_{1}+\left(n-1 \right)n

Usando isso, eu encontrei o valor de (B) 2551

Essa resposta esta correta?
Eu provei pra apenas os valores testados que n=r, como provar isso matematicamente para todos os valores da P.A?
MariMari
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Qua Set 29, 2010 23:48
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: P.A de razão sendo outra P.A, ajuda

Mensagempor Douglasm » Sex Out 01, 2010 14:44

Olá Mari. Deste jeito inicial, dará errado, pois você estará considerando a razão naquele determinado termo, e contará como se todos os outros termos tivessem sido somados utilizando aquela mesma razão. Você deve é somar todos os termos que tem, até chegar no 51º. Isso é simples, veja só:

3 = 1 + 2

7 = 1 + 2 + 4

13 = 1 + 2 + 4 + 6

21 = 1 + 2 + 4 + 6 + 8

É evidente que o enésimo termo será igual a 1 mais a soma de uma progressão de (n-1) termos e razão 2. Logo:

A_{51} = 1 + {50 . 51} = 2551
Avatar do usuário
Douglasm
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 270
Registrado em: Seg Fev 15, 2010 10:02
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: P.A de razão sendo outra P.A, ajuda

Mensagempor MariMari » Sex Out 01, 2010 15:40

Obrigada Douglas. Hoje cedo, eu refletindo um pouco sobre essa questão, percebi que estava errada. Comecei a fazer novamente e cheguei a r=n, o que se encaixa bem na sua resolução.
MariMari
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Qua Set 29, 2010 23:48
Formação Escolar: ENSINO MÉDIO
Andamento: cursando


Voltar para Progressões

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: [calculo] derivada
Autor: beel - Seg Out 24, 2011 16:59

Para derivar a função

(16-2x)(21-x).x

como é melhor fazer?
derivar primeiro sei la, ((16-2x)(21-x))' achar o resultado (y)
e depois achar (y.x)' ?


Assunto: [calculo] derivada
Autor: MarceloFantini - Seg Out 24, 2011 17:15

Você poderia fazer a distributiva e derivar como um polinômio comum.


Assunto: [calculo] derivada
Autor: wellersonobelix - Dom Mai 31, 2015 17:26

Funciona da mesma forma que derivada de x.y.z, ou seja, x'.y.z+x.y'.z+x.y.z' substitui cada expressão pelas variáveis e x',y' e z' é derivada de cada um


Assunto: [calculo] derivada
Autor: wellersonobelix - Dom Mai 31, 2015 17:31

derivada de (16-2x)=-2
derivada de (21-x)=-1
derivada de x=1
derivada de (16-2x)(21-x)x=-2.(21-x)x+(-1).(16-2x)x +1.(16-2x)(21-x)