• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Problema das Bandeiras

Problema das Bandeiras

Mensagempor Joana Gabriela » Seg Ago 09, 2010 10:15

A direção de uma escola decidiu enfeitar o pátio com bandeiras coloridas. As bandeiras foram colocadas em
linha reta, na seguinte ordem: 1 bandeira vermelha, 1 azul, 2 vermelhas, 2 azuis, 3 vermelhas, 3 azuis, e
assim por diante.
Depois de colocadas exatamente 99 bandeiras, o número das de cor azul era:
A) 55
B) 60
C) 50
D) 45
Joana Gabriela
Usuário Ativo
Usuário Ativo
 
Mensagens: 20
Registrado em: Qua Jul 28, 2010 10:13
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Agroecologia
Andamento: cursando

Re: Problema das Bandeiras

Mensagempor Joana Gabriela » Qua Ago 11, 2010 11:27

Tem resposta não é?
Joana Gabriela
Usuário Ativo
Usuário Ativo
 
Mensagens: 20
Registrado em: Qua Jul 28, 2010 10:13
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Agroecologia
Andamento: cursando

Re: Problema das Bandeiras

Mensagempor Douglasm » Qua Ago 11, 2010 20:00

Olá Joana. Pensemos primeiro no seguinte, estamos sempre somando 1 + 1 + 2 + 2 + 3 + 3 + ... ; ou seja estamos somando 2(1 + 2 + 3 + 4 + ... ). Sendo assim, é interessante procurarmos uma soma de números naturais que nos aproxime mais de 99. Sabemos que essa soma é dada por:

S_n = \frac{n(n+1)}{2}

Lembrando que estamos somando dobrado, temos:

2 . S_n = 2 . \frac{n(n+1)}{2} = n(n+1)

Após poucas tentativas, chegamos a n como sendo no máximo 9 (para n maior que 9, note que teremos 110 bandeiras, o que ultrapassaria o limite de 99). Esclarecendo um pouco mais, queremos descobrir quantas bandeiras foram postas, após a última soma "pareada" (que no caso é 9 vermelhas mais 9 azuis). Continuando:

2 . S_9 = 9.(10) = 90\;\mbox{bandeiras pareadas}

Obviamente, se seguirmos a sequência, deveremos somar mais 10 vermelhas, 10 azuis, etc. Como só temos 99, as últimas a serem somadas foram 9 vermelhas. Finalizando, vemos que o total de bandeiras azuis é metade das 90 bandeiras pareadas, ou seja, é de 45 (alternativa d).
Avatar do usuário
Douglasm
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 270
Registrado em: Seg Fev 15, 2010 10:02
Formação Escolar: ENSINO MÉDIO
Andamento: formado


Voltar para Progressões

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}