• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Questão de concurso

Questão de concurso

Mensagempor antonybel » Seg Jul 18, 2022 22:41

Em uma autoestrada há cinco saídas. As distâncias entre duas saídas consecutivas são todas iguais e a distância entre a segunda e a quarta saída é 36 km. A distância entre a primeira e a quinta saída, em quilômetros, é:
antonybel
Usuário Ativo
Usuário Ativo
 
Mensagens: 18
Registrado em: Sex Nov 11, 2011 10:12
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: Questão de concurso

Mensagempor DanielFerreira » Sáb Set 03, 2022 14:08

Olá antonybel!

antonybel escreveu:Em uma autoestrada há cinco saídas. As distâncias entre duas saídas consecutivas são todas iguais e a distância entre a segunda e a quarta saída é 36 km. A distância entre a primeira e a quinta saída, em quilômetros, é:


Sejam \mathtt{s_1}, \mathtt{s_2}, \mathtt{s_3}, \mathtt{s_4} e \mathtt{s_5} as saídas da autoestrada. De acordo com o enunciado, \mathbf{s_4 - s_2 = 36}. Posto isto, determinemos \mathtt{s_5 - s_1}. Segue:



\\ \mathtt{s_4 - s_2 = 36} \\ \mathtt{\left ( s_1 + 3r \right ) - \left ( s_1 + r \right ) = 36} \\ \mathtt{s_1 + 3r - s_1 - r = 36} \\ \mathtt{2r = 36} \\ \mathtt{\boxed{\mathtt{r = 18 \, km}}}

Logo,

\\ \mathtt{s_5 - s_1 =} \\ \mathtt{\left \( s_1 + 4r \right \) - s_1 =} \\ \mathtt{s_1 + 4r - s_1 =} \\ \mathtt{4r =} \\ \mathtt{4 \cdot 18 =} \\ \mathtt{\boxed{\boxed{\mathtt{72 \, km}}}}
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1729
Registrado em: Qui Jul 23, 2009 21:34
Localização: Mangaratiba - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: formado


Voltar para Progressões

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Exercicios de polinomios
Autor: shaft - Qua Jun 30, 2010 17:30

2x+5=\left(x+m\right)²-\left(x-n \right)²

Então, o exercicio pede para encontrar {m}^{3}-{n}^{3}.

Bom, tentei resolver a questão acima desenvolvendo as duas partes em ( )...Logo dps cheguei em um resultado q nao soube o q fazer mais.
Se vcs puderem ajudar !


Assunto: Exercicios de polinomios
Autor: Douglasm - Qua Jun 30, 2010 17:53

Bom, se desenvolvermos isso, encontramos:

2x+5 = 2x(m+n) + m^2-n^2

Para que os polinômios sejam iguais, seus respectivos coeficientes devem ser iguais (ax = bx ; ax² = bx², etc.):

2(m+n) = 2 \;\therefore\; m+n = 1

m^2-n^2 = 5 \;\therefore\; (m+n)(m-n) = 5 \;\therefore\; (m-n) = 5

Somando a primeira e a segunda equação:

2m = 6 \;\therefore\; m = 3 \;\mbox{consequentemente:}\; n=-2

Finalmente:

m^3 - n^3 = 27 + 8 = 35

Até a próxima.