• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Progressão Geométrica - Encontrar G

Progressão Geométrica - Encontrar G

Mensagempor netolucen4 » Qua Jun 26, 2013 20:47

Pessoal como proceder para resolver

Imagem

os dados seriam esses?

{a}_{1} = \sqrt[3]{\pi}

q = \frac{1}{\sqrt[9]{{\pi}^{2}}}

mas não temos nem a quantidade de termos nem o último termo...

para resolver teríamos que usar o {P}_{n} = \sqrt[2]{{\left({a}_{1}.{a}_{n} \right)}^{n}} ?
netolucen4
Novo Usuário
Novo Usuário
 
Mensagens: 7
Registrado em: Sex Jun 21, 2013 04:35
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: Progressão Geométrica - Encontrar G

Mensagempor young_jedi » Qui Jun 27, 2013 23:02

primeiro vamos reescrever esse produto

\sqrt[3]\pi\sqrt[9]\pi\sqrt[27]\pi\dots=\pi^{\frac{1}{3}}.\pi^{\frac{1}{9}}.\pi^{\frac{1}{27}}\dots

=\pi^{\frac{1}{3}+\frac{1}{9}+\frac{1}{27}\dots}


repare que o expoente de pi é a soma de uma progressão geométrica infinita de razão 1/3, é so utilizar a equação da soma para progressão geométrica de razão menor que 1 e você econtrara o resultado, comente se tiver duvidas
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado

Re: Progressão Geométrica - Encontrar G

Mensagempor netolucen4 » Sex Jun 28, 2013 03:08

Young primeiramente muito obrigado, fico muito grato por suas respostas...

Seria assim...

{S}_{\infty} = \frac{\frac{1}{3}}{1-\frac{1}{3}}= \frac{\frac{1}{3}}{\frac{3-1}{3}} = \frac{\frac{1}{3}}{\frac{2}{3}} = \frac{1}{3} . \frac{3}{2} = \frac{1}{2}

e encontraríamos o {\pi}^{\frac{1}{2}} = \sqrt[]{\pi}

e o G =\sqrt[]{\pi}
netolucen4
Novo Usuário
Novo Usuário
 
Mensagens: 7
Registrado em: Sex Jun 21, 2013 04:35
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: Progressão Geométrica - Encontrar G

Mensagempor young_jedi » Sex Jun 28, 2013 10:35

Exatamente, é isso mesmo!!!
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado


Voltar para Progressões

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: [calculo] derivada
Autor: beel - Seg Out 24, 2011 16:59

Para derivar a função

(16-2x)(21-x).x

como é melhor fazer?
derivar primeiro sei la, ((16-2x)(21-x))' achar o resultado (y)
e depois achar (y.x)' ?


Assunto: [calculo] derivada
Autor: MarceloFantini - Seg Out 24, 2011 17:15

Você poderia fazer a distributiva e derivar como um polinômio comum.


Assunto: [calculo] derivada
Autor: wellersonobelix - Dom Mai 31, 2015 17:26

Funciona da mesma forma que derivada de x.y.z, ou seja, x'.y.z+x.y'.z+x.y.z' substitui cada expressão pelas variáveis e x',y' e z' é derivada de cada um


Assunto: [calculo] derivada
Autor: wellersonobelix - Dom Mai 31, 2015 17:31

derivada de (16-2x)=-2
derivada de (21-x)=-1
derivada de x=1
derivada de (16-2x)(21-x)x=-2.(21-x)x+(-1).(16-2x)x +1.(16-2x)(21-x)