por LuRodrigues » Dom Abr 22, 2012 20:08
Caros,
Gostaria de contar com auxílio na resolução:
De uma sequência infinita de quadrados onde a medida do lado de cada um, a partir do segundo é sempre a metade da medida do lado do quadrado anterior, sabe-se que o lado do primeiro quadrado mede 8. Calcular a soma das áreas.
Eu fiz o seguinte cálculo:
a1=8
q=1/2
Aplicando na fórmula de PG infinita=> 16
R: S= l x l => 156
Porém, como resposta conta 145/3 - não entendi a origem do "3". Poderiam me ajudar?
Obrigada.
-
LuRodrigues
- Novo Usuário

-
- Mensagens: 8
- Registrado em: Dom Abr 22, 2012 19:03
- Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
- Andamento: formado
por LuRodrigues » Dom Abr 22, 2012 20:10
Somente retificando a resposta da área que encontrei: 256
Mas como resposta consta 256/3
-
LuRodrigues
- Novo Usuário

-
- Mensagens: 8
- Registrado em: Dom Abr 22, 2012 19:03
- Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
- Andamento: formado
por DanielFerreira » Ter Mai 01, 2012 00:51
LuRodrigues escreveu:Caros,
Gostaria de contar com auxílio na resolução:
De uma sequência infinita de quadrados onde a medida do lado de cada um, a partir do segundo é sempre a metade da medida do lado do quadrado anterior, sabe-se que o lado do primeiro quadrado mede 8. Calcular a soma das áreas.
Eu fiz o seguinte cálculo:
a1=8
q=1/2
Aplicando na fórmula de PG infinita=> 16
R: S= l x l => 156
Porém, como resposta conta 145/3 - não entendi a origem do "3". Poderiam me ajudar?
Obrigada.
O lado do 1º quadrado mede 8, então sua área é 64;
O lado do 2º quadrado mede 4, então sua área é 16;
O lado do 3º quadrado mede 2, então sua área é 4;
(...)
Deixemos os lados de 'lado' e trabalhemos com as áreas:




Sabe-se que:

então,




"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
-
DanielFerreira
- Colaborador - em formação

-
- Mensagens: 1732
- Registrado em: Qui Jul 23, 2009 21:34
- Localização: Mangaratiba - RJ
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática - IFRJ
- Andamento: formado
-
Voltar para Progressões
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- áreas
por cristina » Sex Abr 16, 2010 10:50
- 1 Respostas
- 1649 Exibições
- Última mensagem por Neperiano

Ter Set 27, 2011 19:56
Geometria Plana
-
- AREAS DE FIGURAS
por JOHNY » Qui Set 02, 2010 18:17
- 1 Respostas
- 1879 Exibições
- Última mensagem por Douglasm

Qui Set 02, 2010 18:48
Geometria Plana
-
- Problemas com áreas
por PikenaPin » Ter Mai 31, 2011 14:54
- 1 Respostas
- 2134 Exibições
- Última mensagem por guermandi

Qua Jun 01, 2011 15:22
Geometria Plana
-
- [QUADRILÁTEROS]ÁREAS
por anabrizola » Seg Ago 05, 2013 22:31
- 0 Respostas
- 1463 Exibições
- Última mensagem por anabrizola

Seg Ago 05, 2013 22:31
Geometria Plana
-
- Integral - áreas
por Danilo » Sáb Nov 09, 2013 18:42
- 1 Respostas
- 1919 Exibições
- Última mensagem por e8group

Sex Nov 15, 2013 11:44
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes
Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 09:10
Veja este exercício:
Se A = {

} e B = {

}, então o número de elementos A

B é:
Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?
A resposta é 3?
Obrigado.
Assunto:
método de contagem
Autor:
Molina - Seg Mai 25, 2009 20:42
Boa noite, sinuca.
Se A = {

} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é
A = {1, 2, 4, 5, 10, 20}
Se B = {

} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é
B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...
Feito isso precisamos ver os números que está em ambos os conjuntos, que são:
5, 10 e 20 (3 valores, como você achou).
Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?
sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x
A resposta é 3? Sim, pelo menos foi o que vimos a cima
Bom estudo,

Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 23:35
Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.
Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:
Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?
Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.