• Anúncio Global
    Respostas
    Exibições
    Última mensagem

SOMA DE UMA PA

SOMA DE UMA PA

Mensagempor silvia fillet » Qua Fev 15, 2012 19:50

Um matemático resolve fazer uma rifa para 100 pessoas, para conseguir vender um relógio no valor de R$ 1.000,00. Seriam vendidos 100 números de "00 a 99"que seriam colocados em uma urna com pedras numeradas de 00 a 99. O preço da rifa seria pelo número da pedra, ou seja, deveria ser pago o número da pedra sorteada (pegou 23 na urna, paga-se R$ 23,00) e um número retirado da urna não voltaria para a urna. Ao final, o ganhador do relógio seria dado pela extraçao da loteria federal do final do mes. Entao:

a) qual o valor que seria arrecadado, vendendo-se todos os 100 números contidos na urna? E qual o lucro obtido em relaçao ao valor do relogio?


b) Quantos números no mínimo deveriam ser colocados na urna começando em 00 para que o valor arrecadado cobrisse o valor do relogio?
silvia fillet
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 89
Registrado em: Qua Out 12, 2011 21:07
Formação Escolar: GRADUAÇÃO
Área/Curso: licenciatura em matematica
Andamento: formado

Re: SOMA DE UMA PA

Mensagempor silvia fillet » Sáb Fev 18, 2012 11:24

S = (a1 + an)*n/2
S = (0 + 99)*100/2 = 9900/2 = 4950
4950 - 1000 = 3950
a) O valor arrecadado seria de R$ 4.950,00 e o lucro obtido em relação ao relógio seria de R$ 3.950,00.
0 + 1 + 2 + ... + n = 1000

1000 = (0 + n)*(n+1)/2
2*1000 = n*(n+1)
2000 = n² + n
n² + n - 2000 =0
= 1² - 4(-2000) = 1 + 8000 = 8001
?(8001 =89,4)
n =( (-1±89,4)/2)
n^1 =((-1 +89,4)/2 )=88,4/2=44,2


Logo, valor numérico de n=45
n+1 (número de termos da PA) = 45 +1 = 46

No mínimo devem ser colocados na urna 46 números, a saber, do 00 ao 45
silvia fillet
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 89
Registrado em: Qua Out 12, 2011 21:07
Formação Escolar: GRADUAÇÃO
Área/Curso: licenciatura em matematica
Andamento: formado


Voltar para Progressões

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}