• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Progressão Aritmética

Progressão Aritmética

Mensagempor Andreza » Seg Nov 14, 2011 14:43

Quando nasceu seu filho, Armando abriu uma poupança e depositou R$20,00. Armando fez novos depósitos a cada aniversário do filho, aumentando sempre o valor em R$5,00, de um dépósito para outro. Após o depósito referente ao 25º aniversário de seu filho, quanto Armando terá depositado desde o nascimento de seu filho?

Minha tentativa:
Sendo uma PA, temos:
r=5
a1=20
Calculei na fórmula a25= 140,00

Depois pela fórmula da soma dos termos de uma PA:
Sn=2000,00 ( dois mil reais )

No gabarito tem q dar 2.145,00. Eu errei ou o gabarito está errado. Desde já agradeço muitissimo!!!!
Andreza
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 100
Registrado em: Sáb Out 22, 2011 11:10
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Licenc. Plena Matemática
Andamento: formado

Re: Progressão Aritmética

Mensagempor LuizAquino » Sex Nov 18, 2011 10:34

Andreza escreveu:Quando nasceu seu filho, Armando abriu uma poupança e depositou R$20,00. Armando fez novos depósitos a cada aniversário do filho, aumentando sempre o valor em R$5,00, de um depósito para outro. Após o depósito referente ao 25º aniversário de seu filho, quanto Armando terá depositado desde o nascimento de seu filho?


Andreza escreveu:Minha tentativa:
Sendo uma PA, temos:
r=5
a1=20

Ok

Andreza escreveu:Calculei na fórmula a25= 140,00

Note que a1 representa quando a criança nasceu. Portanto a2 representa o 1° aniversário, a3 representa o 2° aniversário, a4 representa o 3° aniversário e assim por diante. Sendo assim, o 25° aniversário deve ser o termo a26.


Andreza escreveu:Depois pela fórmula da soma dos termos de uma PA:
Sn=2000,00 ( dois mil reais )


Você deve calcular a soma dos 26 termos. Isto é, calcule:

S_{26} = \frac{(a_1 + a_{26})\cdot 26}{2}

Andreza escreveu:No gabarito tem q dar 2.145,00. Eu errei ou o gabarito está errado.


O gabrito está correto.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: Progressão Aritmética

Mensagempor Andreza » Sáb Nov 19, 2011 12:10

Muito obrigada, eu não raciocinei o princípio do exercício. Tenho q prestar mais atenção. Aliás o concurso é mais pegadinha q aprendizado mesmo.
Andreza
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 100
Registrado em: Sáb Out 22, 2011 11:10
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Licenc. Plena Matemática
Andamento: formado


Voltar para Progressões

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Exercicios de polinomios
Autor: shaft - Qua Jun 30, 2010 17:30

2x+5=\left(x+m\right)²-\left(x-n \right)²

Então, o exercicio pede para encontrar {m}^{3}-{n}^{3}.

Bom, tentei resolver a questão acima desenvolvendo as duas partes em ( )...Logo dps cheguei em um resultado q nao soube o q fazer mais.
Se vcs puderem ajudar !


Assunto: Exercicios de polinomios
Autor: Douglasm - Qua Jun 30, 2010 17:53

Bom, se desenvolvermos isso, encontramos:

2x+5 = 2x(m+n) + m^2-n^2

Para que os polinômios sejam iguais, seus respectivos coeficientes devem ser iguais (ax = bx ; ax² = bx², etc.):

2(m+n) = 2 \;\therefore\; m+n = 1

m^2-n^2 = 5 \;\therefore\; (m+n)(m-n) = 5 \;\therefore\; (m-n) = 5

Somando a primeira e a segunda equação:

2m = 6 \;\therefore\; m = 3 \;\mbox{consequentemente:}\; n=-2

Finalmente:

m^3 - n^3 = 27 + 8 = 35

Até a próxima.