• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Progressão Aritmética

Progressão Aritmética

Mensagempor Andreza » Seg Nov 14, 2011 14:43

Quando nasceu seu filho, Armando abriu uma poupança e depositou R$20,00. Armando fez novos depósitos a cada aniversário do filho, aumentando sempre o valor em R$5,00, de um dépósito para outro. Após o depósito referente ao 25º aniversário de seu filho, quanto Armando terá depositado desde o nascimento de seu filho?

Minha tentativa:
Sendo uma PA, temos:
r=5
a1=20
Calculei na fórmula a25= 140,00

Depois pela fórmula da soma dos termos de uma PA:
Sn=2000,00 ( dois mil reais )

No gabarito tem q dar 2.145,00. Eu errei ou o gabarito está errado. Desde já agradeço muitissimo!!!!
Andreza
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 100
Registrado em: Sáb Out 22, 2011 11:10
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Licenc. Plena Matemática
Andamento: formado

Re: Progressão Aritmética

Mensagempor LuizAquino » Sex Nov 18, 2011 10:34

Andreza escreveu:Quando nasceu seu filho, Armando abriu uma poupança e depositou R$20,00. Armando fez novos depósitos a cada aniversário do filho, aumentando sempre o valor em R$5,00, de um depósito para outro. Após o depósito referente ao 25º aniversário de seu filho, quanto Armando terá depositado desde o nascimento de seu filho?


Andreza escreveu:Minha tentativa:
Sendo uma PA, temos:
r=5
a1=20

Ok

Andreza escreveu:Calculei na fórmula a25= 140,00

Note que a1 representa quando a criança nasceu. Portanto a2 representa o 1° aniversário, a3 representa o 2° aniversário, a4 representa o 3° aniversário e assim por diante. Sendo assim, o 25° aniversário deve ser o termo a26.


Andreza escreveu:Depois pela fórmula da soma dos termos de uma PA:
Sn=2000,00 ( dois mil reais )


Você deve calcular a soma dos 26 termos. Isto é, calcule:

S_{26} = \frac{(a_1 + a_{26})\cdot 26}{2}

Andreza escreveu:No gabarito tem q dar 2.145,00. Eu errei ou o gabarito está errado.


O gabrito está correto.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: Progressão Aritmética

Mensagempor Andreza » Sáb Nov 19, 2011 12:10

Muito obrigada, eu não raciocinei o princípio do exercício. Tenho q prestar mais atenção. Aliás o concurso é mais pegadinha q aprendizado mesmo.
Andreza
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 100
Registrado em: Sáb Out 22, 2011 11:10
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Licenc. Plena Matemática
Andamento: formado


Voltar para Progressões

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59