por DanielFerreira » Qua Abr 18, 2012 22:48
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
-
DanielFerreira
- Colaborador - em formação

-
- Mensagens: 1732
- Registrado em: Qui Jul 23, 2009 21:34
- Localização: Mangaratiba - RJ
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática - IFRJ
- Andamento: formado
-
por DanielFerreira » Qua Abr 18, 2012 22:51
30)
Prolongue BG e DG.
Como a nova área é o quádruplo da outra, temos que: as medidas são iguais, portanto, AB = BC = 3
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
-
DanielFerreira
- Colaborador - em formação

-
- Mensagens: 1732
- Registrado em: Qui Jul 23, 2009 21:34
- Localização: Mangaratiba - RJ
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática - IFRJ
- Andamento: formado
-
por Thiago Valenca » Qui Abr 19, 2012 00:29
-
Thiago Valenca
- Novo Usuário

-
- Mensagens: 2
- Registrado em: Seg Abr 16, 2012 17:33
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Administração
- Andamento: formado
por DanielFerreira » Sáb Abr 21, 2012 17:47
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
-
DanielFerreira
- Colaborador - em formação

-
- Mensagens: 1732
- Registrado em: Qui Jul 23, 2009 21:34
- Localização: Mangaratiba - RJ
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática - IFRJ
- Andamento: formado
-
Voltar para Trigonometria
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [Limite]não consigo fazer com que o denominador não de zero.
por marcosmuscul » Ter Mar 26, 2013 12:52
- 2 Respostas
- 1843 Exibições
- Última mensagem por marcosmuscul

Ter Mar 26, 2013 19:48
Cálculo: Limites, Derivadas e Integrais
-
- consigo fazer tudo e sempre enrosco no final.
por ricardosanto » Ter Abr 17, 2012 22:34
- 1 Respostas
- 1440 Exibições
- Última mensagem por TheoFerraz

Ter Abr 17, 2012 23:42
Cálculo: Limites, Derivadas e Integrais
-
- [nao consigo fazer desde o inicio] nunca fiz sozinho só
por jeffinps » Ter Fev 26, 2013 14:47
- 4 Respostas
- 2694 Exibições
- Última mensagem por jeffinps

Qua Fev 27, 2013 15:21
Cálculo: Limites, Derivadas e Integrais
-
- 3 questões de Binômio que não consigo resolver! =/
por Giles » Qua Nov 05, 2008 19:31
- 2 Respostas
- 5934 Exibições
- Última mensagem por Molina

Qui Nov 06, 2008 00:40
Binômio de Newton
-
- não consigo resolver estas questões
por igorluanabianca » Sex Jul 24, 2009 19:58
- 2 Respostas
- 3618 Exibições
- Última mensagem por Cleyson007

Sáb Jul 25, 2009 09:52
Matemática Financeira
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
Taxa de variação
Autor:
felipe_ad - Ter Jun 29, 2010 19:44
Como resolvo uma questao desse tipo:
Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?
A letra (a) consegui resolver e cheguei no resultado correto de

Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é
Alguem me ajuda? Agradeço desde já.
Assunto:
Taxa de variação
Autor:
Elcioschin - Qua Jun 30, 2010 20:47
V = (1/3)*pi*r²*h ----> h = 4r/3
V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³
Derivando:
dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3
Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s
Assunto:
Taxa de variação
Autor:
Guill - Ter Fev 21, 2012 21:17
Temos que o volume é dado por:
Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:
Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.