• Anúncio Global
    Respostas
    Exibições
    Última mensagem

cefet-mg 2012

cefet-mg 2012

Mensagempor Thulio_Parazi » Ter Abr 10, 2012 09:55

Como resolver a expressão sen²2x + cos²4x=1
sen²2x=[sen(x + x)]²=[2*senx*cosx]²=4*sen²x*cos²x
Mas não consegui obter resultado na Expressão cos²4x e não conseuir provar a equação acima.
Thulio_Parazi
Usuário Ativo
Usuário Ativo
 
Mensagens: 17
Registrado em: Qui Abr 05, 2012 11:00
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: cefet-mg 2012

Mensagempor MarceloFantini » Ter Abr 10, 2012 21:12

Thulio, é a mesma questão deste tópico: viewtopic.php?f=109&t=7791 ?
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado


Voltar para Trigonometria

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Exercicios de polinomios
Autor: shaft - Qua Jun 30, 2010 17:30

2x+5=\left(x+m\right)²-\left(x-n \right)²

Então, o exercicio pede para encontrar {m}^{3}-{n}^{3}.

Bom, tentei resolver a questão acima desenvolvendo as duas partes em ( )...Logo dps cheguei em um resultado q nao soube o q fazer mais.
Se vcs puderem ajudar !


Assunto: Exercicios de polinomios
Autor: Douglasm - Qua Jun 30, 2010 17:53

Bom, se desenvolvermos isso, encontramos:

2x+5 = 2x(m+n) + m^2-n^2

Para que os polinômios sejam iguais, seus respectivos coeficientes devem ser iguais (ax = bx ; ax² = bx², etc.):

2(m+n) = 2 \;\therefore\; m+n = 1

m^2-n^2 = 5 \;\therefore\; (m+n)(m-n) = 5 \;\therefore\; (m-n) = 5

Somando a primeira e a segunda equação:

2m = 6 \;\therefore\; m = 3 \;\mbox{consequentemente:}\; n=-2

Finalmente:

m^3 - n^3 = 27 + 8 = 35

Até a próxima.