• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Teorema de Pitágoras

Teorema de Pitágoras

Mensagempor Luciana Dias » Sex Mar 23, 2012 22:46

João e Maria partem do mesmo ponto no mesmo instante. João segue em direção leste, com velocidade constante de 6 km/h; e Maria, em direção norte, com velocidade constante de 4,5 km/h. Suponho que eles caminhem em linha reta, qual será a distancia que os separa depois de duas horas :?:
Luciana Dias
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Qui Mar 22, 2012 19:56
Formação Escolar: ENSINO FUNDAMENTAL II
Andamento: cursando

Re: Teorema de Pitágoras

Mensagempor joaofonseca » Sex Mar 23, 2012 22:50

Alguém anda a brincar!
Novamente esta questão já foi colocada aqui:

viewtopic.php?f=112&t=7615
joaofonseca
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 196
Registrado em: Sáb Abr 30, 2011 12:25
Localização: Lisboa
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando

Re: Teorema de Pitágoras

Mensagempor Luciana Dias » Sex Mar 23, 2012 23:06

Muito obrigada!
Luciana Dias
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Qui Mar 22, 2012 19:56
Formação Escolar: ENSINO FUNDAMENTAL II
Andamento: cursando


Voltar para Trigonometria

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Exercicios de polinomios
Autor: shaft - Qua Jun 30, 2010 17:30

2x+5=\left(x+m\right)²-\left(x-n \right)²

Então, o exercicio pede para encontrar {m}^{3}-{n}^{3}.

Bom, tentei resolver a questão acima desenvolvendo as duas partes em ( )...Logo dps cheguei em um resultado q nao soube o q fazer mais.
Se vcs puderem ajudar !


Assunto: Exercicios de polinomios
Autor: Douglasm - Qua Jun 30, 2010 17:53

Bom, se desenvolvermos isso, encontramos:

2x+5 = 2x(m+n) + m^2-n^2

Para que os polinômios sejam iguais, seus respectivos coeficientes devem ser iguais (ax = bx ; ax² = bx², etc.):

2(m+n) = 2 \;\therefore\; m+n = 1

m^2-n^2 = 5 \;\therefore\; (m+n)(m-n) = 5 \;\therefore\; (m-n) = 5

Somando a primeira e a segunda equação:

2m = 6 \;\therefore\; m = 3 \;\mbox{consequentemente:}\; n=-2

Finalmente:

m^3 - n^3 = 27 + 8 = 35

Até a próxima.