por Cleyson007 » Seg Mai 25, 2009 08:34
Olá, bom dia!
Estou encontrando dificuldade na resolução do exercício que segue. Se alguém puder me dar alguma dica, serei grato.

Até mais
Um abraço.
-

Cleyson007
- Colaborador Voluntário

-
- Mensagens: 1228
- Registrado em: Qua Abr 30, 2008 00:08
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Matemática UFJF
- Andamento: formado
por Marcampucio » Seg Mai 25, 2009 17:42
Observe que pelo Teorema de Tales os ângulos de mesma cor são iguais (alternos internos). Todos os triângulos são iguais.

A revelação não acontece ao encontrar o sábio no alto da montanha. A revelação vem com a subida da montanha.
-
Marcampucio
- Colaborador Voluntário

-
- Mensagens: 180
- Registrado em: Ter Mar 10, 2009 17:48
- Localização: São Paulo
- Formação Escolar: GRADUAÇÃO
- Área/Curso: geologia
- Andamento: formado
por Cleyson007 » Seg Mai 25, 2009 18:02
Marcampucio escreveu:Observe que pelo Teorema de Tales os ângulos de mesma cor são iguais (alternos internos). Todos os triângulos são iguais.

Boa tarde Marcampucio, tudo bem?
Pelo seu comentário, entendi que todos os triângulos vão possuir a mesma área, portanto a área do triângulo FDE será 4 vezes maior que área de AFC.
Seria isso?
Até mais
-

Cleyson007
- Colaborador Voluntário

-
- Mensagens: 1228
- Registrado em: Qua Abr 30, 2008 00:08
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Matemática UFJF
- Andamento: formado
por Marcampucio » Seg Mai 25, 2009 19:53
Sim.
A revelação não acontece ao encontrar o sábio no alto da montanha. A revelação vem com a subida da montanha.
-
Marcampucio
- Colaborador Voluntário

-
- Mensagens: 180
- Registrado em: Ter Mar 10, 2009 17:48
- Localização: São Paulo
- Formação Escolar: GRADUAÇÃO
- Área/Curso: geologia
- Andamento: formado
Voltar para Trigonometria
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- retas paralelas
por Ana Maria da Silva » Ter Jun 18, 2013 11:37
- 0 Respostas
- 1107 Exibições
- Última mensagem por Ana Maria da Silva

Ter Jun 18, 2013 11:37
Geometria Plana
-
- Retas paralelas
por outro » Qua Fev 15, 2017 11:59
- 2 Respostas
- 2446 Exibições
- Última mensagem por outro

Ter Fev 21, 2017 17:30
Geometria Plana
-
- Retas Paralelas - Ajuda
por bira19 » Dom Fev 19, 2012 16:21
- 1 Respostas
- 1347 Exibições
- Última mensagem por fraol

Dom Fev 19, 2012 21:59
Geometria Analítica
-
- retas paralelas e ortogonais ao plano
por ricardosanto » Sáb Dez 15, 2012 11:44
- 1 Respostas
- 1433 Exibições
- Última mensagem por young_jedi

Sáb Dez 15, 2012 20:26
Álgebra Linear
-
- [Retas Paralelas] Achar o valor de x
por Mayra Luna » Qui Fev 28, 2013 21:59
- 2 Respostas
- 1874 Exibições
- Última mensagem por Mayra Luna

Qui Fev 28, 2013 22:25
Trigonometria
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
Taxa de variação
Autor:
felipe_ad - Ter Jun 29, 2010 19:44
Como resolvo uma questao desse tipo:
Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?
A letra (a) consegui resolver e cheguei no resultado correto de

Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é
Alguem me ajuda? Agradeço desde já.
Assunto:
Taxa de variação
Autor:
Elcioschin - Qua Jun 30, 2010 20:47
V = (1/3)*pi*r²*h ----> h = 4r/3
V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³
Derivando:
dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3
Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s
Assunto:
Taxa de variação
Autor:
Guill - Ter Fev 21, 2012 21:17
Temos que o volume é dado por:
Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:
Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.