• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Trigonometria] Equação de segundo grau.

[Trigonometria] Equação de segundo grau.

Mensagempor brunocav » Qui Out 06, 2011 18:31

Olá! Estou com problemas para resolver a seguinte equação:

x^2 - 2x + sen\alpha(x-1) - cos\alpha(1-x) + sen\alpha cos\alpha = -1

Já tentei diversas coisas... Eu acho que cheguei à resposta mas não tenho certeza, vejam:

x^2 - 2x + sen\alpha(x-1) + cos\alpha(x-1) + sen\alpha cos\alpha = -1
x^2 - 2x + sen\alpha x + cos\alpha x - sen\alpha - cos\alpha + sen\alpha cos\alpha = -1
x^2 + x(sen\alpha + cos\alpha - 2) + (1 - cos\alpha)(1 - sen\alpha) = 0

Logo:
\Delta = (sen\alpha + cos\alpha - 2)^2 - 4(1 - cos\alpha)(1 - sen\alpha)
\Delta = (sen^2\alpha + cos^2\alpha + 4 + 2sen\alpha cos\alpha  -4sen\alpha -4cos\alpha) + (-4sen\alpha cos\alpha + 4sen\alpha + 4cos\alpha)
\Delta = 5 - 2sen\alpha cos\alpha

x = \frac{2 - sen \alpha - cos \alpha +- \sqrt(5 - 2 sen \alpha cos \alpha)}{2}

Onde está o erro, ou qual é a solução?

Agradeço desde já.
brunocav
Novo Usuário
Novo Usuário
 
Mensagens: 5
Registrado em: Qua Mai 25, 2011 20:03
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: [Trigonometria] Equação de segundo grau.

Mensagempor brunocav » Ter Out 25, 2011 16:41

Descobri o erro. Faz um tempo, mas me esqueci de avisar. O erro foi no cálculo do delta, hehe...

De fato, o delta correto seria assim:

\Delta = (sen(a) - cos(a))^2

A resposta seria, então:

x = \frac {2 - sen(a) - cos(a) \pm (sen(a) - cos(a))}{2}
x_1 = 1 - cos(a)
x_2 = 1 - sen(a)
brunocav
Novo Usuário
Novo Usuário
 
Mensagens: 5
Registrado em: Qua Mai 25, 2011 20:03
Formação Escolar: ENSINO MÉDIO
Andamento: cursando


Voltar para Trigonometria

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: função demanda
Autor: ssousa3 - Dom Abr 03, 2011 20:55

alguém poderia me ajudar nesse exercício aqui Uma loja de CDs adquire cada unidade por R$20,00 e a revende por R$30,00. Nestas condições,
a quantidade mensal que consegue vender é 500 unidades. O proprietário estima que, reduzindo o preço para R$28,00, conseguirá vender 600 unidades por mês.
a) Obtenha a função demanda, supondo ser linear

Eu faço ensino médio mas compro apostilas de concursos para me preparar para mercado de trabalho e estudar sozinho não é fácil. Se alguém puder me ajudar aqui fico grato


Assunto: função demanda
Autor: ssousa3 - Seg Abr 04, 2011 14:30

Gente alguém por favor me ensine a calcular a fórmula da função demanda *-)