por Pre-Universitario » Qui Ago 11, 2011 17:31
Um cowboy joga uma moeda para o alto. Quando a moeda atinge sua
altura maxima. ele da um tiro nela, com braço inclinado 60 graus em relaççao ao solo,
acertando-a. A moeda começa a cair em linha reta, perpendicularmente ao solo, e, com o braço
inclinado 45 graus em relação ao solo, o cowboy acerta mais um tiro nela. Sabendo que entre
um tiro e outro a moeda caiu 12 m, e que a altura do revolver em relação ao solo na hora dos dois disparos
era de 2 m, qual a altura maxima alcançada pela moeda?
Bom ! eu faço e refaço mas ñ chego nessa resposta
![20+6\sqrt[]{3} 20+6\sqrt[]{3}](/latexrender/pictures/d6ce4c5798c2c32cda0c573597155efc.png)
Gostaria que alguem resolvesse essa questão por favor
obrigado
-
Pre-Universitario
- Usuário Ativo

-
- Mensagens: 22
- Registrado em: Sex Ago 05, 2011 17:16
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: 3
- Andamento: formado
por LuizAquino » Qui Ago 11, 2011 20:33
Primeiro comentário: do ponto de vista físico, essa questão está mal colocada.
Ignorando uma porção de leis da Física, esse exercício tenta descrever algo como ilustra a figura abaixo.

- altura_da_moeda.png (4.74 KiB) Exibido 3576 vezes
Podemos então escrever o sistema:

Isso é o mesmo que:

Da segunda equação, temos que

.
Podemos então reescrever a primeira equação como

. Resolvendo essa equação, obtemos

.
-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
por Pre-Universitario » Sex Ago 12, 2011 17:22
valeu por responder
estou respondendo algumas questões do livro
luiz roberto dante
livro:matematica "contexto e aplicações" primeiro Ano
lançado em 2006 se qizer da uma olhada no livro
é so ir há um bilbioteca blz
valeu
-
Pre-Universitario
- Usuário Ativo

-
- Mensagens: 22
- Registrado em: Sex Ago 05, 2011 17:16
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: 3
- Andamento: formado
Voltar para Trigonometria
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
Taxa de variação
Autor:
felipe_ad - Ter Jun 29, 2010 19:44
Como resolvo uma questao desse tipo:
Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?
A letra (a) consegui resolver e cheguei no resultado correto de

Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é
Alguem me ajuda? Agradeço desde já.
Assunto:
Taxa de variação
Autor:
Elcioschin - Qua Jun 30, 2010 20:47
V = (1/3)*pi*r²*h ----> h = 4r/3
V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³
Derivando:
dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3
Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s
Assunto:
Taxa de variação
Autor:
Guill - Ter Fev 21, 2012 21:17
Temos que o volume é dado por:
Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:
Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.