• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Triângulo / Inscrito

Triângulo / Inscrito

Mensagempor Marcelo C Delgado » Qua Nov 10, 2010 16:06

Boa tarde pessoal,

Tenho dois problemas a serem resolvidos. Consegui resolver os mesmos, porém os resultados não estão batendo.

Segue abaixo os problemas, cito:

a) Qual a área do triângulo inscrito nos pontos médios dos lados de um triângulo equilátero de lado igual a 2m?
Resposta: raiz quadrada de 3/4

b) Quanto vale o lado do triângulo equilátero cujo raio da circunferencia inscrita nele mede 2m?
Resposta: 4 raiz quadrada de 3

Um abraço a todos.

Att.

Marcelo C. Delgado
Marcelo C Delgado
Novo Usuário
Novo Usuário
 
Mensagens: 4
Registrado em: Sex Set 10, 2010 18:08
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Técnico Mecânico
Andamento: cursando

Re: Triângulo / Inscrito

Mensagempor Rogerio Murcila » Qua Nov 10, 2010 20:08

Olá Marcelo,

Se o triângulo for equilátero de lado l, sua área A pode ser obtida com:

A=\frac{{l}^{2}\sqrt[2]{3}}{4}

Nas minhas contas deu \sqrt[2]{3} confere ai.
Rogerio Murcila
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 64
Registrado em: Sex Set 10, 2010 16:28
Formação Escolar: GRADUAÇÃO
Área/Curso: Eletronica / Quimica / Adm
Andamento: formado

Re: Triângulo / Inscrito

Mensagempor Jefferson » Qui Nov 18, 2010 13:48

Resposta a)
Pense comigo, todo triângulo equilátero é semelhante.
Nesse caso você divide os lados de um triângulo equilátero ao meio. E une.
Resultado vai obter 4 triângulos, que também serão equiláteros e iguais.
Assim a área procurada será a área do triângulo original dividida por 4.
L = 2
h = (Lraiz de 3)/2
área =( bxh)/2

A = ( 2x2R3)/4 = R3

A/4 = (R3)/4=raiz de3 dividido por 4

Resposta b)
Se você fizer a figura de um triângulo equilátero com um circulo inscrito.
Na base dele você terá um triângulo retângulo em que o ângulo da base é 30 graus, oposto a esse ângulo você terá o raio do circulo e adjacente a ele você terá a metade do lado do triângulo.
então:
Tangente de 30 graus = cateto oposto dividido pelo cateto adjacente.

Tg 30 =(R3)/3
cateto oposto = r = 2m
cateto adjacente = L/2

(R3)/3 = 2/(L/2)

(LR3)/2 = 6

L = 4raiz de 3
Jefferson
Usuário Ativo
Usuário Ativo
 
Mensagens: 13
Registrado em: Ter Nov 16, 2010 23:18
Localização: Vila Velha - ES
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: formado

Re: Triângulo / Inscrito

Mensagempor Rogerio Murcila » Qui Nov 18, 2010 19:04

Olá Jeffersosn,

Agora que eu fui ler que ele pede a area do triangulo inscrito nos pontos médios dos lados de um triângulo equilátero de lado igual a 2m, portanto voce está certo.

Tambem aplicando a formula anterior chego no mesmo resultado:

A=\frac{l^2\sqrt[2]{3}}{4} = A=\frac{\sqrt[2]{3}}{4}
Rogerio Murcila
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 64
Registrado em: Sex Set 10, 2010 16:28
Formação Escolar: GRADUAÇÃO
Área/Curso: Eletronica / Quimica / Adm
Andamento: formado


Voltar para Trigonometria

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes

 



Assunto: Princípio da Indução Finita
Autor: Fontelles - Dom Jan 17, 2010 14:42

Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?
2n \geq n+1 ,\forall n \in\aleph*
O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois 2.1 \geq 1+1
2°) Admitamos que P(k), k \in \aleph*, seja verdadeira:
2k \geq k+1 (hipótese da indução)
e provemos que 2(k+1) \geq (K+1)+1
Temos: (Nessa parte)
2(k+1) = 2k+2 \geq (k+1)+2 > (k+1)+1


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Seg Jan 18, 2010 01:55

Boa noite Fontelles.

Não sei se você está familiarizado com o Princípio da Indução Finita, portanto vou tentar explicar aqui.

Ele dá uma equação, no caso:

2n \geq n+1, \forall n \in \aleph^{*}

E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:

2*1 \geq 1+1

Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que k seja verdadeiro, e pretendemos provar que também é verdadeiro para k+1.

\mbox{Suponhamos que P(k), }k \in \aleph^{*},\mbox{ seja verdadeiro:}
2k \geq k+1

\mbox{Vamos provar que:}
2(k+1) \geq (k+1)+1

Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.

Espero ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Fontelles - Seg Jan 18, 2010 02:28

Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!


Assunto: Princípio da Indução Finita
Autor: Fontelles - Qui Jan 21, 2010 11:32

Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Jan 21, 2010 12:25

Boa tarde Fontelles!

Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.

O que temos que provar é isso: 2(k+1) \geq (k+1)+1, certo? O autor começou do primeiro membro:

2(k+1)= 2k+2

Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:

2k+2 \geq (k+1)+2

Que é outra verdade. Agora, com certeza:

(k+1)+2 > (k+1)+1

Agora, como 2(k+1) é \geq a (k+1)+2, e este por sua vez é sempre > que (k+1)+1, logo:

2(k+1) \geq (k+1)+1 \quad \mbox{(c.q.d)}

Inclusive, nunca é igual, sempre maior.

Espero (dessa vez) ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Caeros - Dom Out 31, 2010 10:39

Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?


Assunto: Princípio da Indução Finita
Autor: andrefahl - Dom Out 31, 2010 11:37

c.q.d. = como queriamos demonstrar =)


Assunto: Princípio da Indução Finita
Autor: Abelardo - Qui Mai 05, 2011 17:33

Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Mai 05, 2011 20:05

Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.


Assunto: Princípio da Indução Finita
Autor: Vennom - Qui Abr 26, 2012 23:04

MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.

Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa. :-D