• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Ajuda pra resolver exercicio

Ajuda pra resolver exercicio

Mensagempor Brunna013 » Ter Jun 03, 2008 11:22

Bom dia!!!


Por favor me ajude na resolução de 2 exercios não sei como começar...segue:

Se x é um arco de 3° quadrante e COSx= -4/5 então calcule:

a- Sen x

b- Tg x

c-Cotg x

d- Sec x

e- Cossec x

Me ajude preciso entregar issu hoje!!!!!!!!!
POr favor!!!!
Brunna013
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Ter Jun 03, 2008 11:10
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Ajuda pra resolver exercicio

Mensagempor Molina » Ter Jun 03, 2008 12:39

d- Sec x

sec x = \frac{1}{cosx}\Rightarrow
sec x = \frac{1}{\frac{-4}{5}}\Rightarrow
sec x = \frac{-5}{4}
Diego Molina | CV | FB | .COM
Equipe AjudaMatemática.com


"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
Avatar do usuário
Molina
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 1546
Registrado em: Dom Jun 01, 2008 14:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - UFSC
Andamento: formado

Re: Ajuda pra resolver exercicio

Mensagempor fabiosousa » Ter Jun 03, 2008 16:56

Olá Brunna, boa tarde, seja bem-vinda!

Acredito que você tenha lido as regras do fórum.
Entendo sua necessidade para entrega, mas o objetivo aqui não é simplesmente fornecer a resolução, mas sim, interagir a partir das dúvidas, tentativas e dificuldades, visando colaborar com o estudo e entendimento alheio.

Neste contexto, caso queira ajuda sobre "como começar", seguem algumas dicas.

Em primeiro lugar, ao falarmos de círculo trigonométrico e funções trigonométricas, é preciso ter em mente suas representações, utilizando triângulos semelhantes. Eu preparei uma figura do círculo unitário, reunindo as medidas das funções:
relacoes_trigonometricas_no_circulo_unitario.jpg


As relações trigonométricas são provenientes da semelhança entre os triângulos retângulos.

Repare que algumas delas são aplicações diretas do teorema de Pitágoras, veja e compare com a figura:

sen^2 x + cos^2 = 1

sec^2 x = 1 + tg^2 x

cosec^2 x = 1 + cotg^2 x


Veja abaixo como relações mais comuns como a tangente e secante são obtidas por semelhança.

Para a tangente, partimos da semelhança entre os triângulos OAF e OBC, pelo caso ângulo-ângulo:
\frac{AF}{OA} = \frac{BC}{OB}

\frac{sen x}{cos x} = \frac{tg x}{1}

De onde segue:
tg x = \frac{sen x}{cos x}


A secante, utilizada no cálculo pelo molina, tem origem da semelhança entre os mesmos triângulos OAF e OBC, compare localizando na figura:
\frac{OC}{OF} = \frac{OB}{OA}

\frac{sec x}{1} = \frac{1}{cos x}

sec x = \frac{1}{cos x}


Brunna, note que o ângulo x nesta figura está no primeiro quadrante, mas as relações são válidas para os quatro quadrantes.
Convém utilizar a idéia desta construção para fazer a sua figura no terceiro quadrante, só assim você visualizará o que está calculando.
De qualquer forma, apenas com o que foi apresentado aqui, você já pode exercitar os cálculos pedidos utilizando as relações.

Comente suas dúvidas e bons estudos!
Espero ter ajudado.
Fábio Sousa
Equipe AjudaMatemática.com
| bibliografia | informações gerais | arquivo de dúvidas | desafios

"O tolo pensa que é sábio, mas o homem sábio sabe que ele próprio é um tolo."
William Shakespeare
Avatar do usuário
fabiosousa
Colaborador Administrador - Professor
Colaborador Administrador - Professor
 
Mensagens: 870
Registrado em: Qui Jul 19, 2007 10:58
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática IME-USP
Andamento: formado

Re: Ajuda pra resolver exercicio

Mensagempor Neperiano » Seg Mai 03, 2010 13:07

Ola

Por favor crie um topico em outro lugar para responder-mos sua perguntas, pois assim fica mais facil de fazer referencia depois

Obrigado
Sómente os mortos conhecem o fim da guerra
"Platão"
Avatar do usuário
Neperiano
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 960
Registrado em: Seg Jun 16, 2008 17:09
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia de Produção
Andamento: cursando

Re: Ajuda pra resolver exercicio

Mensagempor Molina » Seg Mai 03, 2010 14:33

Maligno escreveu:Ola

Por favor crie um topico em outro lugar para responder-mos sua perguntas, pois assim fica mais facil de fazer referencia depois

Obrigado

Obrigado, Maligno.

O tópico foi movido para cá: viewtopic.php?f=106&t=1975

:y:
Diego Molina | CV | FB | .COM
Equipe AjudaMatemática.com


"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
Avatar do usuário
Molina
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 1546
Registrado em: Dom Jun 01, 2008 14:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - UFSC
Andamento: formado


Voltar para Trigonometria

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}