por adauto martins » Sáb Jul 03, 2021 16:28
(EsTE/ITA-1947)a cotangente de um angulo sendo
![1+\sqrt[]{2} 1+\sqrt[]{2}](/latexrender/pictures/63700792f877bb0654c4f00c7dd30502.png)
,calcular
a secante do dobro desse angulo.
-
adauto martins
- Colaborador Voluntário

-
- Mensagens: 1171
- Registrado em: Sex Set 05, 2014 19:37
- Formação Escolar: EJA
- Área/Curso: matematica
- Andamento: cursando
por adauto martins » Sáb Jul 03, 2021 18:39
soluçao
temos que
![cotgx=1/tgx\Rightarrow tgx=1/cotgx=1/(1+\sqrt[]{2}) cotgx=1/tgx\Rightarrow tgx=1/cotgx=1/(1+\sqrt[]{2})](/latexrender/pictures/e9e01a1373ea3ef1951c3a3f6630bc7e.png)
racionalizando teremos
![tgx=(1/(1+\sqrt[]{2}).((1-\sqrt[]{2})/(1-\sqrt[]{2})\Rightarrow
tgx=\sqrt[]{2}-1 tgx=(1/(1+\sqrt[]{2}).((1-\sqrt[]{2})/(1-\sqrt[]{2})\Rightarrow
tgx=\sqrt[]{2}-1](/latexrender/pictures/cfed1db33e8be15023153478412db4ac.png)
temos que
![sec^2(2x)=1+tg^2(2x)=1+(tg(x+x))=1+((tgx+tgx)/(1-tg^2x))
sec^2(2x)=1+(2tgx/(1-tg^2x)=1+(2.(\sqrt[]{2}-1)/1-(\sqrt[]{2}-1)^2)=... sec^2(2x)=1+tg^2(2x)=1+(tg(x+x))=1+((tgx+tgx)/(1-tg^2x))
sec^2(2x)=1+(2tgx/(1-tg^2x)=1+(2.(\sqrt[]{2}-1)/1-(\sqrt[]{2}-1)^2)=...](/latexrender/pictures/247e0bc41c47b82b49622e989b200384.png)
calculando a expressao teremos
![sec(2x)=(+/-)\sqrt[]{...}) sec(2x)=(+/-)\sqrt[]{...})](/latexrender/pictures/bd2fbdd26cd3302611d05c25535f7e8f.png)
termine-o...
-
adauto martins
- Colaborador Voluntário

-
- Mensagens: 1171
- Registrado em: Sex Set 05, 2014 19:37
- Formação Escolar: EJA
- Área/Curso: matematica
- Andamento: cursando
por adauto martins » Dom Jul 04, 2021 13:01
uma correçao

-
adauto martins
- Colaborador Voluntário

-
- Mensagens: 1171
- Registrado em: Sex Set 05, 2014 19:37
- Formação Escolar: EJA
- Área/Curso: matematica
- Andamento: cursando
Voltar para Trigonometria
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- exercicio resolvido
por adauto martins » Sex Jul 15, 2016 14:48
- 0 Respostas
- 33685 Exibições
- Última mensagem por adauto martins

Sex Jul 15, 2016 14:48
Teoria dos Números
-
- exercicio resolvido
por adauto martins » Qua Jul 20, 2016 18:35
- 0 Respostas
- 31773 Exibições
- Última mensagem por adauto martins

Qua Jul 20, 2016 18:35
Cálculo: Limites, Derivadas e Integrais
-
- exercicio resolvido
por adauto martins » Ter Jul 26, 2016 17:43
- 0 Respostas
- 22007 Exibições
- Última mensagem por adauto martins

Ter Jul 26, 2016 17:43
Cálculo: Limites, Derivadas e Integrais
-
- exercicio resolvido
por adauto martins » Sáb Ago 13, 2016 11:28
- 0 Respostas
- 17062 Exibições
- Última mensagem por adauto martins

Sáb Ago 13, 2016 11:28
Teoria dos Números
-
- exercicio resolvido
por adauto martins » Sex Out 18, 2019 14:29
- 2 Respostas
- 22841 Exibições
- Última mensagem por adauto martins

Sex Out 18, 2019 15:42
Trigonometria
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
Taxa de variação
Autor:
felipe_ad - Ter Jun 29, 2010 19:44
Como resolvo uma questao desse tipo:
Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?
A letra (a) consegui resolver e cheguei no resultado correto de

Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é
Alguem me ajuda? Agradeço desde já.
Assunto:
Taxa de variação
Autor:
Elcioschin - Qua Jun 30, 2010 20:47
V = (1/3)*pi*r²*h ----> h = 4r/3
V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³
Derivando:
dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3
Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s
Assunto:
Taxa de variação
Autor:
Guill - Ter Fev 21, 2012 21:17
Temos que o volume é dado por:
Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:
Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.