Meu exercício é de faculdade, mas acho que não terá problema, porque não acho que tenha sido a intenção da professora usar matemática de faculdade nessa questão. O problema é o seguinte:
Descreva como resolver o seguinte problema tanto com os métodos tradicionais (lapis, papel, etc) quanto com Geogebra
Construa um triângulo dado lado AB de comprimento c, ângulo ? a partir do vértice A e mediana mB.
O problema pede para você descrever os passos que cumprem a tarefa tanto com o método tradicional (papel, lápis, etc) e tanto com o Geogebra.
No Geogebra, eu preciso deixar o lado que a mediana mB toca com o tamanho correto. Não estou perguntando como fazer isso com o Geogebra: eu quero ajuda em como chegar com uma fórmula que defina o tamanho do lado em função das três variáveis descritas no problema. Eu já tentei utilizar seno e cosseno da soma dos ângulos, lei do seno, lei do cosseno, teorema de pitágoras e a propriedade que a mediana divide o triângulo em duas áreas de tamanho igual. Até agora, sem sucesso. Não sei mais como abordar o problema.
Qualquer dica, ajuda, sermão é bem-vindo.
Por favor, me ajudem.

![\frac{\sqrt[]{\sqrt[4]{8}+\sqrt[]{\sqrt[]{2}-1}}-\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}-1}}}{\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}+1}}} \frac{\sqrt[]{\sqrt[4]{8}+\sqrt[]{\sqrt[]{2}-1}}-\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}-1}}}{\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}+1}}}](/latexrender/pictures/981987c7bcdf9f8f498ca4605785636a.png)
e elevar ao quadrado os dois lados)