• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Problema com tangentes

Problema com tangentes

Mensagempor davi_11 » Ter Abr 06, 2010 16:56

Gostaria de provar que:

\dfrac {tg^2 80 (\sqrt {3} - tg50)} {tg50\sqrt {3} - tg^2 80}

É igual a -tg30
Mas quanto mais eu mexo na equação mais longe fico do resultado, alguém poderia me ajudar?
"Se é proibido pisar na grama, o jeito é deitar e rolar..."
davi_11
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 47
Registrado em: Sex Abr 02, 2010 22:47
Localização: Leme - SP
Formação Escolar: ENSINO MÉDIO
Área/Curso: Curso técnico em eletrotécnica
Andamento: formado

Re: Problema com tangentes

Mensagempor Elcioschin » Qua Abr 07, 2010 11:49

Algumas dicas:

a + b = 90° -----> tga*tgb = 1 ---> Ex.: tg10º*tg80º = 1, tg40º*tg50º = 1, tg30º*tg60º = 1

tga + tgb = tg(a + b)*(1 - tga*tgb) e tga - tgb = tg(a - b)*(1 + tga*tgb)

tg2a = 2*tga/(1 - tg²a) ----> Ex.: tg80° = 2*tg40°/(1 - tg²40º)

Começando pelo numerador:

tg²80º*(V3 - tg50º) = tg80º*tg80º*(tg60º - tg50º) = tg80º*tg80º*[tg(60º - 50º)*(1 + tg60º*tg50º)] =

= tg80º*tg80º*tg10º*(1 + tg60º*tg50º) = tg80º + tg80º*tg50º*tg60º

Veja que agora temos tg80º e tg40º e que 40º + 50º = 90º

2*tg40º/(1 - tg²40º) + 2*tg40º*tg50º*tg60º/(1 - tg²40º) = 2*tg40º/(1 - tg²40º) + 2*tg60º/(1 - tg²40º) =

2*(tg40º + tg60º)/(1 - tg²40) = 2*tg100º*(1 - tg40º*tg60º)/(1 - tg²40º)

E assim por diante. Faça o mesmo com o denominador e no final simplifiqye.
Elcioschin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 624
Registrado em: Sáb Ago 01, 2009 10:49
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: formado

Re: Problema com tangentes

Mensagempor davi_11 » Qui Abr 08, 2010 17:25

obrigado, vou tentar isto
"Se é proibido pisar na grama, o jeito é deitar e rolar..."
davi_11
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 47
Registrado em: Sex Abr 02, 2010 22:47
Localização: Leme - SP
Formação Escolar: ENSINO MÉDIO
Área/Curso: Curso técnico em eletrotécnica
Andamento: formado


Voltar para Trigonometria

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: simplifiquei e achei...está certo?????????????
Autor: zig - Sex Set 23, 2011 13:57

{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Assunto: simplifiquei e achei...está certo?????????????
Autor: Vennom - Sex Set 23, 2011 21:41

zig escreveu:{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo: {\frac{1}{4}}^{-1} = \frac{4}{1}

Então pense o seguinte: a fração geratriz de 0,05 é \frac{1}{20} , ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja: {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}

A raiz quadrada de vinte, você acha fácil, né?

Espero ter ajudado.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:23

Nós podemos simplificar, um pouco, sqrt(20) da seguinte forma:

sqrt(20) = sqrt(4 . 5) = sqrt( 2^2 . 5 ) = 2 sqrt(5).

É isso.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:24

Nós podemos simplificar, um pouco, \sqrt(20) da seguinte forma:

\sqrt(20) = \sqrt(4 . 5) = \sqrt( 2^2 . 5 ) = 2 \sqrt(5).

É isso.