• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Funções circulares inversas

Funções circulares inversas

Mensagempor Ananda » Qui Mar 20, 2008 20:03

Boa noite!

Eis o exercício:

Calcular o valor de y=sen\left[2.arc \,cos \frac{3}{5} \right]

Resposta: \frac{24}{25}

Fiz do seguinte modo:

cos\frac{a}{2}=\frac{3}{5}

Daí usei as fórmulas de arco duplo para descobrir cos a:

cos\left(2\frac{a}{2} \right)=2cos^2\left(\frac{a}{2} \right)-1

2.\frac{9}{25}-1

\frac{18-25}{25}=-\frac{7}{25}

Daí, para descobrir o seno, usei a relação fundamental que deu:

sen=\sqrt[]{1-\frac{49}{625}}= \sqrt[]{\frac{576}{625}}=\pm\frac{24}{25}

Gostaria de saber se a resposta do livro que está errada ou se fui eu que errei... Pensei e não vi uma justificativa para só considerar a possibilidade positiva.

Grata desde já!

Excelente feriado!
Ananda
Ananda
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 55
Registrado em: Sex Fev 22, 2008 19:37
Área/Curso: Estudante
Andamento: cursando

Re: Funções circulares inversas

Mensagempor admin » Qui Mar 20, 2008 23:23

Olá Ananda, boa noite!

Na obtenção do seno através da relação fundamental, há um passo omitido por você que é o módulo ao extrair a raiz quadrada dos dois membros.

Lembrando da definição de módulo:
|x| = 
\left\{
\begin{matrix}
x & se & x\geq0 \\
-x & se & x<0 \\
\end{matrix}
 \right.
Repare que o sinal negativo é para garantir que o resultado seja sempre positivo.

Com a substituição que você fez, o cos\left( 2 \frac{a}{2} \right) já é definitivamente negativo, está correto.
E ainda, 0 \leq cos^2\left( 2 \frac{a}{2} \right) \leq 1.

Ou seja, sen\left( 2 \frac{a}{2} \right) já é positivo (como pode-se constatar em sua última raiz), por isso não cabe o segundo caso da definição de módulo.



Ananda, apenas outro comentário:
Quando eu fiz para conferir, também utilizei o arco duplo, mas do seno.
Achei mais imediato, tente fazer.
Além de aplicarmos a relação fundamental uma única vez. Você precisou aplicar duas (no começo e no final).
Os números também ficam menores.


Eu fiz a seguinte substituição:
a = arccos\frac35

y = sen2a = 2sena \, cosa = 2 \sqrt{1-cos^2{a}} \cdot cosa

Aqui, as justitificativas do sinal são as seguintes:

cosa > 0

0 \leq cos^2{a} \leq 1


Espero ter ajudado e um ótimo feriado!
Fábio Sousa
Equipe AjudaMatemática.com
| bibliografia | informações gerais | arquivo de dúvidas | desafios

"O tolo pensa que é sábio, mas o homem sábio sabe que ele próprio é um tolo."
William Shakespeare
Avatar do usuário
admin
Colaborador Administrador - Professor
Colaborador Administrador - Professor
 
Mensagens: 886
Registrado em: Qui Jul 19, 2007 10:58
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática IME-USP
Andamento: formado

Re: Funções circulares inversas

Mensagempor Ananda » Seg Mar 24, 2008 17:13

Grata, Fábio!

São tantos detalhes que na resolução acabo me esquecendo de algo.

Preciso de mais atenção!

Mais uma vez grata!
Ananda
Ananda
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 55
Registrado em: Sex Fev 22, 2008 19:37
Área/Curso: Estudante
Andamento: cursando


Voltar para Trigonometria

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 14 visitantes

 



Assunto: Princípio da Indução Finita
Autor: Fontelles - Dom Jan 17, 2010 14:42

Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?
2n \geq n+1 ,\forall n \in\aleph*
O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois 2.1 \geq 1+1
2°) Admitamos que P(k), k \in \aleph*, seja verdadeira:
2k \geq k+1 (hipótese da indução)
e provemos que 2(k+1) \geq (K+1)+1
Temos: (Nessa parte)
2(k+1) = 2k+2 \geq (k+1)+2 > (k+1)+1


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Seg Jan 18, 2010 01:55

Boa noite Fontelles.

Não sei se você está familiarizado com o Princípio da Indução Finita, portanto vou tentar explicar aqui.

Ele dá uma equação, no caso:

2n \geq n+1, \forall n \in \aleph^{*}

E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:

2*1 \geq 1+1

Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que k seja verdadeiro, e pretendemos provar que também é verdadeiro para k+1.

\mbox{Suponhamos que P(k), }k \in \aleph^{*},\mbox{ seja verdadeiro:}
2k \geq k+1

\mbox{Vamos provar que:}
2(k+1) \geq (k+1)+1

Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.

Espero ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Fontelles - Seg Jan 18, 2010 02:28

Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!


Assunto: Princípio da Indução Finita
Autor: Fontelles - Qui Jan 21, 2010 11:32

Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Jan 21, 2010 12:25

Boa tarde Fontelles!

Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.

O que temos que provar é isso: 2(k+1) \geq (k+1)+1, certo? O autor começou do primeiro membro:

2(k+1)= 2k+2

Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:

2k+2 \geq (k+1)+2

Que é outra verdade. Agora, com certeza:

(k+1)+2 > (k+1)+1

Agora, como 2(k+1) é \geq a (k+1)+2, e este por sua vez é sempre > que (k+1)+1, logo:

2(k+1) \geq (k+1)+1 \quad \mbox{(c.q.d)}

Inclusive, nunca é igual, sempre maior.

Espero (dessa vez) ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Caeros - Dom Out 31, 2010 10:39

Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?


Assunto: Princípio da Indução Finita
Autor: andrefahl - Dom Out 31, 2010 11:37

c.q.d. = como queriamos demonstrar =)


Assunto: Princípio da Indução Finita
Autor: Abelardo - Qui Mai 05, 2011 17:33

Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Mai 05, 2011 20:05

Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.


Assunto: Princípio da Indução Finita
Autor: Vennom - Qui Abr 26, 2012 23:04

MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.

Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa. :-D