• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Por que eu não posso cortar? Equações

Por que eu não posso cortar? Equações

Mensagempor Fontelles » Ter Dez 22, 2009 20:20

Senhores, estava resolvendo uma questão de trigonometria e me deparei com essa situação.
E podia cortar uns membros da equação, mas faltavam soluções na resposta.
Citarei o exemplo com o intervalo [o, 2pi]
(1-tgx)(1+sen2x)=1+tgx
[(cosx-senx)/cosx](1+sen2x)]=(senx+cosx)/cosx
Corta o cosx.
(cosx-senx)(1+sen2x)=(senx+cosx)
(1+sen2x)²=(senx+cosx)²/(cosx-senx)²
1+2.sen2x+sen²2x=(1+sen2x)/(1-sen2x)
(1-sen2x)(1+2.sen2x+sen²2x)=(1+sen2x)
1+2sen2x+sen²2x-sen2x-2.sen²2x-sen³2x=1+sen2x
sen2x=t
-t²-t³=0
t²+t³=0
t²(1+t)=0
t=0 ou t=-1
sen2x=0 <=> sen2x=sen0 => 2x=2kpi <=> x=kpi ou 2x=pi+2kpi <=> x=pi/2 + kpi
sen2x=-1 <=> sen2x=sen3pi/2 => 2x=3pi/2+2kpi <=> x=3pi/4+kpi ou x=-pi/4+kpi
Para k=0 => x=0, ou x=pi/2, ou x=3pi/4,
Para k=1 => x=pi, ou x=3pi/2, ou x=7pi/4
S={0, pi/2, 3pi/4, pi, 3pi/2, 7pi/4}, que por sinal está errado.
Resolvendo a mesma questão
(1-tgx)(1+sen2x)=(1+tgx)
1+sen2x=(senx+cosx)/(cosx-senx)
(senx+cosx)²=(senx+cosx)/(cosx-senx)
(senx+cosx)(cosx-senx)=1
Daí a resposta continua errada.
O gabarito é S={3pi/4, 7pi/4, 0, pi, 2pi}
Fontelles
Usuário Ativo
Usuário Ativo
 
Mensagens: 17
Registrado em: Qua Dez 09, 2009 01:23
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: Por que eu não posso cortar? Equações

Mensagempor Elcioschin » Qua Dez 23, 2009 08:54

Você NÃO pode cortar, exatamente por isto: cortando você elimina algumas soluções:
Veja um exemplo na sua própria solução (errada):
.............
t² + t³ = 0
t³ = -t² ----> Dividinto (Cortando) t²:
t = -1
...............
Viu como você eliminou soluções?

Veja agora a solução correta:

(1 - tgx)*(1 + sen2x) = 1 + tgx ---> Desenvolvendo o 1º membro:
1 + sen2x - tgx - tgx*sen2x = 1 + tgx
sen2x - tgxsen2x = 2*tgx
2*senx*cosx - (senx/cosx)*2*senx*cosx = 2*tgx
senx*cosx - sen²x = senx/cosx
senx*cos²x - sen²x*cosx = senx
- sen²x*cosx = senx*(1 - cos²x)
- sen²x*cosx = senx*sen²x
- sen²x*cosx = sen³x
sen³x + sen²x*cosx = 0
sen²x*(senx + cosx) = 0

Soluções:

1) sen²x =0 ----> senx = 0 -----> x = 0, pi, 2*pi

2) senx + cosx = 0 ----> senx = -cosx -----> x = 3pi/4 (2º quadrante) e x = 7*pi/4 (4º quadrante)
Elcioschin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 624
Registrado em: Sáb Ago 01, 2009 10:49
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: formado

Re: Por que eu não posso cortar? Equações

Mensagempor Fontelles » Qua Dez 23, 2009 16:02

Mas t= -1 está na solução.
Veja:
t²+t³=0
t²(1+t)=0
t=0 ou t=-1
Fontelles
Usuário Ativo
Usuário Ativo
 
Mensagens: 17
Registrado em: Qua Dez 09, 2009 01:23
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: Por que eu não posso cortar? Equações

Mensagempor MarceloFantini » Qui Dez 24, 2009 02:57

Você não perde a solução de t = -1 mas sim t=0 (no exemplo citado pelo Elcio).
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Área/Curso: Bacharelado em matemática pura
Andamento: cursando

Re: Por que eu não posso cortar? Equações

Mensagempor Fontelles » Dom Dez 27, 2009 08:47

Realmente, eu estava considerando t=sen2x.
Obrigado
Fontelles
Usuário Ativo
Usuário Ativo
 
Mensagens: 17
Registrado em: Qua Dez 09, 2009 01:23
Formação Escolar: ENSINO MÉDIO
Andamento: formado


Voltar para Trigonometria

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}