• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Por que eu não posso cortar? Equações

Por que eu não posso cortar? Equações

Mensagempor Fontelles » Ter Dez 22, 2009 20:20

Senhores, estava resolvendo uma questão de trigonometria e me deparei com essa situação.
E podia cortar uns membros da equação, mas faltavam soluções na resposta.
Citarei o exemplo com o intervalo [o, 2pi]
(1-tgx)(1+sen2x)=1+tgx
[(cosx-senx)/cosx](1+sen2x)]=(senx+cosx)/cosx
Corta o cosx.
(cosx-senx)(1+sen2x)=(senx+cosx)
(1+sen2x)²=(senx+cosx)²/(cosx-senx)²
1+2.sen2x+sen²2x=(1+sen2x)/(1-sen2x)
(1-sen2x)(1+2.sen2x+sen²2x)=(1+sen2x)
1+2sen2x+sen²2x-sen2x-2.sen²2x-sen³2x=1+sen2x
sen2x=t
-t²-t³=0
t²+t³=0
t²(1+t)=0
t=0 ou t=-1
sen2x=0 <=> sen2x=sen0 => 2x=2kpi <=> x=kpi ou 2x=pi+2kpi <=> x=pi/2 + kpi
sen2x=-1 <=> sen2x=sen3pi/2 => 2x=3pi/2+2kpi <=> x=3pi/4+kpi ou x=-pi/4+kpi
Para k=0 => x=0, ou x=pi/2, ou x=3pi/4,
Para k=1 => x=pi, ou x=3pi/2, ou x=7pi/4
S={0, pi/2, 3pi/4, pi, 3pi/2, 7pi/4}, que por sinal está errado.
Resolvendo a mesma questão
(1-tgx)(1+sen2x)=(1+tgx)
1+sen2x=(senx+cosx)/(cosx-senx)
(senx+cosx)²=(senx+cosx)/(cosx-senx)
(senx+cosx)(cosx-senx)=1
Daí a resposta continua errada.
O gabarito é S={3pi/4, 7pi/4, 0, pi, 2pi}
Fontelles
Usuário Ativo
Usuário Ativo
 
Mensagens: 17
Registrado em: Qua Dez 09, 2009 01:23
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: Por que eu não posso cortar? Equações

Mensagempor Elcioschin » Qua Dez 23, 2009 08:54

Você NÃO pode cortar, exatamente por isto: cortando você elimina algumas soluções:
Veja um exemplo na sua própria solução (errada):
.............
t² + t³ = 0
t³ = -t² ----> Dividinto (Cortando) t²:
t = -1
...............
Viu como você eliminou soluções?

Veja agora a solução correta:

(1 - tgx)*(1 + sen2x) = 1 + tgx ---> Desenvolvendo o 1º membro:
1 + sen2x - tgx - tgx*sen2x = 1 + tgx
sen2x - tgxsen2x = 2*tgx
2*senx*cosx - (senx/cosx)*2*senx*cosx = 2*tgx
senx*cosx - sen²x = senx/cosx
senx*cos²x - sen²x*cosx = senx
- sen²x*cosx = senx*(1 - cos²x)
- sen²x*cosx = senx*sen²x
- sen²x*cosx = sen³x
sen³x + sen²x*cosx = 0
sen²x*(senx + cosx) = 0

Soluções:

1) sen²x =0 ----> senx = 0 -----> x = 0, pi, 2*pi

2) senx + cosx = 0 ----> senx = -cosx -----> x = 3pi/4 (2º quadrante) e x = 7*pi/4 (4º quadrante)
Elcioschin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 624
Registrado em: Sáb Ago 01, 2009 10:49
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: formado

Re: Por que eu não posso cortar? Equações

Mensagempor Fontelles » Qua Dez 23, 2009 16:02

Mas t= -1 está na solução.
Veja:
t²+t³=0
t²(1+t)=0
t=0 ou t=-1
Fontelles
Usuário Ativo
Usuário Ativo
 
Mensagens: 17
Registrado em: Qua Dez 09, 2009 01:23
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: Por que eu não posso cortar? Equações

Mensagempor MarceloFantini » Qui Dez 24, 2009 02:57

Você não perde a solução de t = -1 mas sim t=0 (no exemplo citado pelo Elcio).
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Por que eu não posso cortar? Equações

Mensagempor Fontelles » Dom Dez 27, 2009 08:47

Realmente, eu estava considerando t=sen2x.
Obrigado
Fontelles
Usuário Ativo
Usuário Ativo
 
Mensagens: 17
Registrado em: Qua Dez 09, 2009 01:23
Formação Escolar: ENSINO MÉDIO
Andamento: formado


Voltar para Trigonometria

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59