• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Trigonometria] soma de cossenos

[Trigonometria] soma de cossenos

Mensagempor blaze » Ter Jun 03, 2014 15:43

Olá.
Estava a estudar equações trigonométricas quando me lembrei de uma questão. Resolver equações do tipo \cos \alpha=1 é fácil, mas quando há mais do que um cosseno, por exemplo,

\cos (\frac{\alpha}{2}) +2\cos (\frac{\pi-\alpha}{2})=1
o problema fica mais difícil. Andei à procura pela net mas não encontro nada que me explique esta última equação; alguém me pode ajudar/ensinar?
blaze
Novo Usuário
Novo Usuário
 
Mensagens: 8
Registrado em: Qua Mai 07, 2014 17:07
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: [Trigonometria] soma de cossenos

Mensagempor DanielFerreira » Ter Jun 03, 2014 20:46

Blaze, a princípio, acho que podes aplicar \cos (a - b) = \cos a \cdot \cos b + \sin a \cdot \sin b.
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1732
Registrado em: Qui Jul 23, 2009 21:34
Localização: Mangaratiba - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: formado

Re: [Trigonometria] soma de cossenos

Mensagempor blaze » Ter Jun 03, 2014 20:52

Isso iria dar-me uma outra igualdade mais complicada de resolver: 1-\cos \frac{\alpha}{2} = 2\sin\frac{\alpha}{2}
blaze
Novo Usuário
Novo Usuário
 
Mensagens: 8
Registrado em: Qua Mai 07, 2014 17:07
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: [Trigonometria] soma de cossenos

Mensagempor DanielFerreira » Ter Jun 03, 2014 20:56

\\ \cos \left ( \frac{\alpha }{2} \right ) + 2 \cdot \cos \left ( \frac{\pi}{2} - \frac{\alpha }{2} \right ) = 1 \\\\\\ \cos \left ( \frac{\alpha }{2} \right ) + 2 \cdot \left ( \cos \frac{\pi }{2} \cdot \cos \frac{\alpha}{2} + \sin \frac{\pi }{2} \cdot \sin \frac{\alpha}{2} \right ) = 1 \\\\\\ \cos \left ( \frac{\alpha }{2} \right ) + 2 \cdot \left ( 0 \cdot \cos \frac{\alpha}{2} + 1 \cdot \sin \frac{\alpha}{2} \right ) = 1 \\\\\\ \cos \left ( \frac{\alpha }{2} \right ) + 2 \cdot \sin \left (\frac{\alpha}{2} \right ) = 1


Sabemos que \cos^2 x + \sin^2 x = 1 \Rightarrow \cos^2 \left ( \frac{\alpha }{2} \right ) + \sin^2 \left (\frac{\alpha}{2} \right ) = 1

Resolva o sistema,

\begin{cases} \cos \left ( \frac{\alpha }{2} \right ) + 2 \cdot \sin \left (\frac{\alpha}{2} \right ) = 1 \\\\ \cos^2 \left ( \frac{\alpha }{2} \right ) + \sin^2 \left (\frac{\alpha}{2} \right ) = 1\end{cases}

Espero ter ajudado!
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1732
Registrado em: Qui Jul 23, 2009 21:34
Localização: Mangaratiba - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: formado

Re: [Trigonometria] soma de cossenos

Mensagempor blaze » Ter Jun 03, 2014 21:29

Sim, é isso mesmo. Vai dar um ângulo do 2ºQ mas temos que igualar ao 3ºQ por causa da geometria do círculo trigonométrico.

Obrigado
blaze
Novo Usuário
Novo Usuário
 
Mensagens: 8
Registrado em: Qua Mai 07, 2014 17:07
Formação Escolar: ENSINO MÉDIO
Andamento: cursando


Voltar para Trigonometria

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59