por Lana Brasil » Qui Abr 17, 2014 21:44
Boa Noite.
Sabendo que 2 sen x + 5 cos x = 0 e que pi/2<x<pi, obtenha o valor de sen x e cos x.
Estou com dúvidas na resolução da equação acima. Resolvi cheguei a um número muito estranho para cosx e sen x mas no enunciado o intervalo corresponde a cosx negativo e senx positivo. Encontrei exatamente o contrário. Podem me ajudar, por favor?
Obrigada.
-
Lana Brasil
- Usuário Parceiro
-
- Mensagens: 73
- Registrado em: Dom Abr 07, 2013 16:02
- Formação Escolar: ENSINO MÉDIO
- Andamento: cursando
por e8group » Qui Abr 17, 2014 23:32
A ideia é estabelecer uma conexão entre seno e cosseno . Sabemos que isto é possível , uma das relações que nos permite escreve seno em função de cosseno e vice-versa é relação trigonométrica fundamental :
.
Pois bem , vou sugerir uma álgebra que nos leva a resposta
Ps.: O intervalo é
. A função cosseno é sempre negativa neste intervalo ,logo
.
Segue ,
. Podemos dividir ambos membros
,
. Como ambos membros é positivo , elevando ao quadrado
. Porém sabemos q
.
Então ,
. Logo
ou seja
. Como
, obtemos
.
Agora tente terminar . Importante é compreender a ideia geral ...
-
e8group
- Colaborador Voluntário
-
- Mensagens: 1400
- Registrado em: Sex Jun 01, 2012 12:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
por Lana Brasil » Sex Abr 18, 2014 14:02
santhiago escreveu:A ideia é estabelecer uma conexão entre seno e cosseno . Sabemos que isto é possível , uma das relações que nos permite escreve seno em função de cosseno e vice-versa é relação trigonométrica fundamental :
.
Pois bem , vou sugerir uma álgebra que nos leva a resposta
Ps.: O intervalo é
. A função cosseno é sempre negativa neste intervalo ,logo
.
Segue ,
. Podemos dividir ambos membros
,
. Como ambos membros é positivo , elevando ao quadrado
. Porém sabemos q
.
Então ,
. Logo
ou seja
. Como
, obtemos
.
Agora tente terminar . Importante é compreender a ideia geral ...
Obrigada pela ajuda.
Eu já havia feito os cálculos e cheguei nos valores de sen x e cos x. O meu problema é só o intervalo. Como cheguei em um valor positivo para o cos x, apenas coloco o sinal negativo? Queria saber por que?
-
Lana Brasil
- Usuário Parceiro
-
- Mensagens: 73
- Registrado em: Dom Abr 07, 2013 16:02
- Formação Escolar: ENSINO MÉDIO
- Andamento: cursando
por e8group » Sex Abr 18, 2014 14:08
Por favor mostre sua resolução , assim poderei te ajudar. A princípio que posso dizer é q algo errado , cosseno é sempre negativo no intervalo .
-
e8group
- Colaborador Voluntário
-
- Mensagens: 1400
- Registrado em: Sex Jun 01, 2012 12:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
por Lana Brasil » Sex Abr 18, 2014 14:29
santhiago escreveu:Por favor mostre sua resolução , assim poderei te ajudar. A princípio que posso dizer é q algo errado , cosseno é sempre negativo no intervalo .
Obrigada novamente. Acabei de descobrir meu erro bobo. Simplesmente esqueci de colocar + e - ao tirar raiz do cos x. Ou seja, a positiva não serve.
-
Lana Brasil
- Usuário Parceiro
-
- Mensagens: 73
- Registrado em: Dom Abr 07, 2013 16:02
- Formação Escolar: ENSINO MÉDIO
- Andamento: cursando
por e8group » Sex Abr 18, 2014 15:30
Ok. :
Sempre tenha em mente que
não é
e sim
. Logo , se
,
|a| = - a > 0 , ou seja ,
. Caso , a > 0 ou a = 0 ,
.
-
e8group
- Colaborador Voluntário
-
- Mensagens: 1400
- Registrado em: Sex Jun 01, 2012 12:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
Voltar para Trigonometria
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [Equação trigonométrica] Resolução da equação
por JessicaAraujo » Qui Abr 11, 2013 15:59
- 2 Respostas
- 1616 Exibições
- Última mensagem por JessicaAraujo
Qui Abr 11, 2013 19:12
Funções
-
- Equação Trigonométrica.
por rodsales » Sáb Ago 29, 2009 18:41
- 4 Respostas
- 3802 Exibições
- Última mensagem por rodsales
Sáb Ago 29, 2009 21:19
Trigonometria
-
- equação trigonométrica
por thaa_121 » Qui Abr 08, 2010 15:22
- 1 Respostas
- 3686 Exibições
- Última mensagem por Molina
Qui Abr 08, 2010 23:58
Trigonometria
-
- [Equação Trigonométrica]Equação trigonométrica
por gustavoluiss » Ter Ago 09, 2011 00:32
- 12 Respostas
- 7766 Exibições
- Última mensagem por gustavoluiss
Qua Ago 10, 2011 18:20
Trigonometria
-
- Equação Trigonometrica
por joaofonseca » Seg Nov 28, 2011 00:38
- 5 Respostas
- 2717 Exibições
- Última mensagem por TheoFerraz
Ter Nov 29, 2011 15:53
Trigonometria
Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes
Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 09:10
Veja este exercício:
Se A = {
} e B = {
}, então o número de elementos A
B é:
Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?
A resposta é 3?
Obrigado.
Assunto:
método de contagem
Autor:
Molina - Seg Mai 25, 2009 20:42
Boa noite, sinuca.
Se A = {
} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é
A = {1, 2, 4, 5, 10, 20}
Se B = {
} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é
B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...
Feito isso precisamos ver os números que está em ambos os conjuntos, que são:
5, 10 e 20 (3 valores, como você achou).
Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?
sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x
A resposta é 3? Sim, pelo menos foi o que vimos a cima
Bom estudo,
Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 23:35
Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.
Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:
Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?
Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.