• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Equação Trigonométrica

Equação Trigonométrica

Mensagempor Lana Brasil » Qui Abr 17, 2014 21:44

Boa Noite.
Sabendo que 2 sen x + 5 cos x = 0 e que pi/2<x<pi, obtenha o valor de sen x e cos x.

Estou com dúvidas na resolução da equação acima. Resolvi cheguei a um número muito estranho para cosx e sen x mas no enunciado o intervalo corresponde a cosx negativo e senx positivo. Encontrei exatamente o contrário. Podem me ajudar, por favor?
Obrigada.
Lana Brasil
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 73
Registrado em: Dom Abr 07, 2013 16:02
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Equação Trigonométrica

Mensagempor e8group » Qui Abr 17, 2014 23:32

A ideia é estabelecer uma conexão entre seno e cosseno . Sabemos que isto é possível , uma das relações que nos permite escreve seno em função de cosseno e vice-versa é relação trigonométrica fundamental : sin^2 x + cos^2x = 1 .

Pois bem , vou sugerir uma álgebra que nos leva a resposta

Ps.: O intervalo é (\pi/2,\pi) = I . A função cosseno é sempre negativa neste intervalo ,logo - cos(x) > 0 , \forall x \in I .

Segue ,

2 sin x + 5cos x = 0  \iff  2 sin x =  - 5 cosx  \iff   sinx = -\frac{5}{2} cos(x) . Podemos dividir ambos membros - cos(x) \neq 0 ,

- tan(x) = \frac{5}{2} . Como ambos membros é positivo , elevando ao quadrado

tan^2 x = 25/4 . Porém sabemos q 1 + tan^2 x = sec^2 x = 1/cos^2 x .

Então , sec^2 x = 1/cos^2 x =   tan^2 x  +1 =  25/4 + 1 = 29/4 . Logo cos^2(x) = 4/29 ou seja

|cos(x)| = 2/\sqrt{29} . Como cos(x) < 0 , obtemos cos(x) =- 2/\sqrt{29} .

Agora tente terminar . Importante é compreender a ideia geral ...
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Equação Trigonométrica

Mensagempor Lana Brasil » Sex Abr 18, 2014 14:02

santhiago escreveu:A ideia é estabelecer uma conexão entre seno e cosseno . Sabemos que isto é possível , uma das relações que nos permite escreve seno em função de cosseno e vice-versa é relação trigonométrica fundamental : sin^2 x + cos^2x = 1 .

Pois bem , vou sugerir uma álgebra que nos leva a resposta

Ps.: O intervalo é (\pi/2,\pi) = I . A função cosseno é sempre negativa neste intervalo ,logo - cos(x) > 0 , \forall x \in I .

Segue ,

2 sin x + 5cos x = 0  \iff  2 sin x =  - 5 cosx  \iff   sinx = -\frac{5}{2} cos(x) . Podemos dividir ambos membros - cos(x) \neq 0 ,

- tan(x) = \frac{5}{2} . Como ambos membros é positivo , elevando ao quadrado

tan^2 x = 25/4 . Porém sabemos q 1 + tan^2 x = sec^2 x = 1/cos^2 x .

Então , sec^2 x = 1/cos^2 x =   tan^2 x  +1 =  25/4 + 1 = 29/4 . Logo cos^2(x) = 4/29 ou seja

|cos(x)| = 2/\sqrt{29} . Como cos(x) < 0 , obtemos cos(x) =- 2/\sqrt{29} .

Agora tente terminar . Importante é compreender a ideia geral ...


Obrigada pela ajuda.
Eu já havia feito os cálculos e cheguei nos valores de sen x e cos x. O meu problema é só o intervalo. Como cheguei em um valor positivo para o cos x, apenas coloco o sinal negativo? Queria saber por que?
Lana Brasil
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 73
Registrado em: Dom Abr 07, 2013 16:02
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Equação Trigonométrica

Mensagempor e8group » Sex Abr 18, 2014 14:08

Por favor mostre sua resolução , assim poderei te ajudar. A princípio que posso dizer é q algo errado , cosseno é sempre negativo no intervalo .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Equação Trigonométrica

Mensagempor Lana Brasil » Sex Abr 18, 2014 14:29

santhiago escreveu:Por favor mostre sua resolução , assim poderei te ajudar. A princípio que posso dizer é q algo errado , cosseno é sempre negativo no intervalo .


Obrigada novamente. Acabei de descobrir meu erro bobo. Simplesmente esqueci de colocar + e - ao tirar raiz do cos x. Ou seja, a positiva não serve.
Lana Brasil
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 73
Registrado em: Dom Abr 07, 2013 16:02
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Equação Trigonométrica

Mensagempor e8group » Sex Abr 18, 2014 15:30

Ok. :

Sempre tenha em mente que \sqrt{a^2} não é a e sim |a| . Logo , se a < 0 ,

|a| = - a > 0 , ou seja ,\sqrt{a^2} = -a . Caso , a > 0 ou a = 0 , |a| = a .  Neste caso sim [tex] \sqrt{a^2} = a .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando


Voltar para Trigonometria

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: simplifiquei e achei...está certo?????????????
Autor: zig - Sex Set 23, 2011 13:57

{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Assunto: simplifiquei e achei...está certo?????????????
Autor: Vennom - Sex Set 23, 2011 21:41

zig escreveu:{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo: {\frac{1}{4}}^{-1} = \frac{4}{1}

Então pense o seguinte: a fração geratriz de 0,05 é \frac{1}{20} , ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja: {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}

A raiz quadrada de vinte, você acha fácil, né?

Espero ter ajudado.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:23

Nós podemos simplificar, um pouco, sqrt(20) da seguinte forma:

sqrt(20) = sqrt(4 . 5) = sqrt( 2^2 . 5 ) = 2 sqrt(5).

É isso.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:24

Nós podemos simplificar, um pouco, \sqrt(20) da seguinte forma:

\sqrt(20) = \sqrt(4 . 5) = \sqrt( 2^2 . 5 ) = 2 \sqrt(5).

É isso.