• Anúncio Global
    Respostas
    Exibições
    Última mensagem

trigonometria

trigonometria

Mensagempor victorrocha31 » Dom Nov 22, 2009 23:45

1)expresse:
a)300 graus em radianos
b)pi/6 em graus
victorrocha31
Novo Usuário
Novo Usuário
 
Mensagens: 4
Registrado em: Dom Nov 22, 2009 20:54
Formação Escolar: GRADUAÇÃO
Área/Curso: psicologia
Andamento: cursando

Re: trigonometria

Mensagempor Elcioschin » Seg Nov 23, 2009 13:15

180º = pi rad

Agora faça com Regra de Três.
Elcioschin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 624
Registrado em: Sáb Ago 01, 2009 10:49
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: formado

Re: trigonometria

Mensagempor Molina » Seg Nov 23, 2009 13:16

victorrocha31 escreveu:1)expresse:
a)300 graus em radianos
b)pi/6 em graus


Boa tarde, Victor.

Você pode verificar esses itens fazendo uma simples regra de 3.

Temos que \pi=180\°, ou seja, a regra de três do item a) ficaria assim:

\pi=180\°
x=300\°

Multiplicando cruzado você descobrirá x.

Faça o mesmo no item b)

:y:
Diego Molina | CV | FB | .COM
Equipe AjudaMatemática.com


"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
Avatar do usuário
Molina
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 1551
Registrado em: Dom Jun 01, 2008 14:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - UFSC
Andamento: formado


Voltar para Trigonometria

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.