• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Teorema de Pitágoras - Problema

Teorema de Pitágoras - Problema

Mensagempor ALPC » Qua Mai 22, 2013 17:50

Estou tendo problemas para resolver essa questão de trigonometria no triângulo retângulo no qual eu creio que se pode ser resolvido com Teorema de Pitágoras:

Imagem

No jogo de bocha, disputado num terreno plano, o objetivo é conseguir lançar uma bola de raio 8 o mais próximo possível de uma bola menor, de raio 4. Num lançamento, um jogador conseguiu fazer com que as duas
bolas ficassem encostadas, conforme ilustra a figura abaixo. A distância entre os pontos A e B, em que as bolas
tocam o chão, é

a) 8
b) 6√2
c) 8√2
d) 4√3
e) 6√3
Resposta: C


Eu tentei resolver da seguinte maneira:
Imagem

12^2 = 8^2 + x^2
144 = 64 + x^2
144 - 64 = x^2
80 = x^2
\sqrt{80} = x
Simplificando:
4\sqrt{5} = x
Avatar do usuário
ALPC
Usuário Ativo
Usuário Ativo
 
Mensagens: 19
Registrado em: Sex Jan 04, 2013 16:26
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Teorema de Pitágoras - Problema

Mensagempor Pedro123 » Qui Mai 23, 2013 16:45

Seu raciocinio esta 100% correto, porém, na hora de escrever o cateto conhecido, esqueceu de descontar os raios, no caso, nao seria 8, e sim 4 cm. Tente fazer assim. Abraços
Pedro123
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 58
Registrado em: Qui Jun 10, 2010 22:46
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Mecanica - 1° Período
Andamento: cursando

Re: Teorema de Pitágoras - Problema

Mensagempor ALPC » Qui Mai 23, 2013 18:30

Oi Pedro, ainda não estou conseguindo entender o motivo daquele cateto medir 4 e não 8.

O exercício diz:
No jogo de bocha, disputado num terreno plano, o objetivo é conseguir lançar uma bola de raio 8 o mais próximo possível de uma bola menor, de raio 4.


Pelo que eu entendi disso, esse cateto que vai do raio da maior bola até o ponto A deve medir 8, pois esse cateto começa do raio(8) até o ponto A.

Você poderia me explicar isso?
Avatar do usuário
ALPC
Usuário Ativo
Usuário Ativo
 
Mensagens: 19
Registrado em: Sex Jan 04, 2013 16:26
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Teorema de Pitágoras - Problema

Mensagempor Pedro123 » Qui Mai 23, 2013 21:51

Então... Pelo que eu estou vendo, creio que está confundindo onde o triângulo retângulo é formado, tomei a liberdade de usar o desenho acima para ilustrar melhor o que acontece. O fato é, o triângulo retângulo é formado pelos pontos CFD, e não pelos pontos CAB. Porém, como podemos ver, o segmento AB é igual ao segmento DF, portanto basta calcularmos DF para sabermos AB. Veja tambem que o cateto CF não é igual à 8, pois não é CA, sendo assim, ele é uma diferença entre CA (8) e FA, onde FA é igual a BD, que vale 4, pois é o raio da esfera menor. Assim, CF = CA - AF = 8 - 4 = 4

Creio que agora ficou um pouco menos confuso o meu pensamento. Se tiver mais dúvidas, é so falar. abraços
Anexos
exer_01.jpg
exer_01.jpg (5.54 KiB) Exibido 443 vezes
Pedro123
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 58
Registrado em: Qui Jun 10, 2010 22:46
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Mecanica - 1° Período
Andamento: cursando

Re: Teorema de Pitágoras - Problema

Mensagempor ALPC » Dom Mai 26, 2013 00:20

Agora eu consegui entender Pedro, obrigado.
Avatar do usuário
ALPC
Usuário Ativo
Usuário Ativo
 
Mensagens: 19
Registrado em: Sex Jan 04, 2013 16:26
Formação Escolar: ENSINO MÉDIO
Andamento: cursando


Voltar para Trigonometria

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}