• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[TRIGONOMETRIA] Determinar valor da função trigonométrica

[TRIGONOMETRIA] Determinar valor da função trigonométrica

Mensagempor lucas77 » Sáb Mar 23, 2013 14:18

Olá pessoal!

Estou com uma dúvida de como resolvo uma função trignométrica.
Preciso achar o valor de Cotg x. Tenho os valores de Tg x, Sen x e Cos x, os quais já estão inseridos na fórmula.

Meu problema maior é que não sei como resolvê-la. Eu tentei resolvê-la mas minha dificuldade é com radiciação. Como resolvo isso? Por favor, me expliquem em passos bem detalhados para que eu aprenda.

O resultado desta função tem de dar menos raiz de 3.

Obrigado!

Imagem
lucas77
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Qua Jan 09, 2013 20:02
Formação Escolar: ENSINO MÉDIO
Área/Curso: Curso Técnico em Química
Andamento: cursando

Re: [TRIGONOMETRIA] Determinar valor da função trigonométric

Mensagempor timoteo » Sáb Mar 23, 2013 15:45

Olá.

Eu acho bom você dar uma olhada em propriedades aritméticas, pois, você está iniciando agora o curso e daqui pra frente você terá muitos problemas matemáticos mais difíceis que este! Não se esqueça: Até o maior dos mestres revisa a base!

Resolução: \frac{\frac{\sqrt[]{3}}{2}}{-\frac{1}{2}} = (\frac{\sqrt[]{3}}{2})(-\frac{2}{1}) = - \sqrt[]{3}

Bem, é isso ai!
timoteo
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 117
Registrado em: Ter Fev 14, 2012 07:07
Formação Escolar: GRADUAÇÃO
Área/Curso: bacharel matemática
Andamento: cursando

Re: [TRIGONOMETRIA] Determinar valor da função trigonométric

Mensagempor lucas77 » Sáb Mar 23, 2013 16:15

timoteo escreveu:
Resolução: \frac{\frac{\sqrt[]{3}}{2}}{-\frac{1}{2}} = (\frac{\sqrt[]{3}}{2})(-\frac{2}{1}) = - \sqrt[]{3}



Olá!

Obrigado por sua ajuda!
Eu acho que não me expressei bem aqui. Sua resolução está certa, mas não compreende toda a fórmula. Vou postar esta imagem abaixo para entender melhor o problema. Por favor, me ajude. Você disse sobre estudar propriedades aritméticas, há algum bom link que você saiba me indicar por favor?

Obrigado!

Imagem
lucas77
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Qua Jan 09, 2013 20:02
Formação Escolar: ENSINO MÉDIO
Área/Curso: Curso Técnico em Química
Andamento: cursando

Re: [TRIGONOMETRIA] Determinar valor da função trigonométric

Mensagempor timoteo » Dom Mar 24, 2013 11:59

Olá.

Olha, a formula é o que você esta vendo!

Cotangente é igual ao inverso da tangente, tangente é seno sobre cosseno, e colocando estes valores na equação ficamos com o valor que eu resolvi.

Olha, quanto a questão de link o que eu posso te dizer é que o melhor você estudar por livros, vá a um cebo, onde os livros são baratos, ou vá na escola e peguei alguns emprestados.

Os que eu uso são o de Manoel Paiva, nos livros os assuntos vem bem simples, com bastantes exemplos e com bastantes exercícios.

Por links o assunto vem muito simplificado! Mesmo assim:

http://www.infoenem.com.br/os-10-melhores-sites-e-blogs-de-matematica-do-brasil/


Mas, está é minha opinião!
timoteo
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 117
Registrado em: Ter Fev 14, 2012 07:07
Formação Escolar: GRADUAÇÃO
Área/Curso: bacharel matemática
Andamento: cursando


Voltar para Trigonometria

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 09:10

Veja este exercício:

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} e B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z}, então o número de elementos A \cap B é:

Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.

Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?

No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?

A resposta é 3?

Obrigado.


Assunto: método de contagem
Autor: Molina - Seg Mai 25, 2009 20:42

Boa noite, sinuca.

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é A = {1, 2, 4, 5, 10, 20}

Se B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...

Feito isso precisamos ver os números que está em ambos os conjuntos, que são: 5, 10 e 20 (3 valores, como você achou).

Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?

sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x

A resposta é 3? Sim, pelo menos foi o que vimos a cima


Bom estudo, :y:


Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 23:35

Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.

Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:

Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?

Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?