a medida da extensão, em metros, de cada degrau é
a)
![\frac{2\sqrt[]{3}}{3} \frac{2\sqrt[]{3}}{3}](/latexrender/pictures/0085a930a97d2bc1eac18b611d935c10.png)
b)
![\frac{\sqrt[]{2}}{3} \frac{\sqrt[]{2}}{3}](/latexrender/pictures/5702a5e64d62cac7ef489c3be1ef9be2.png)
c)
![\frac{\sqrt[]{3}}{6} \frac{\sqrt[]{3}}{6}](/latexrender/pictures/09578f84c5d642cb7f35fbbbcc929176.png)
d)
![\frac{\sqrt[]{3}}{2} \frac{\sqrt[]{3}}{2}](/latexrender/pictures/21682d7c1e802e9b52a99c01850489c4.png)
e)
![\frac{\sqrt[]{3}}{3} \frac{\sqrt[]{3}}{3}](/latexrender/pictures/80dc3f3832b00aa8da65bd3ac29edf6d.png)
Esse tentei de várias maneiras mas não consegui. Alguem pode ajudar?
![\frac{2\sqrt[]{3}}{3} \frac{2\sqrt[]{3}}{3}](/latexrender/pictures/0085a930a97d2bc1eac18b611d935c10.png)
![\frac{\sqrt[]{2}}{3} \frac{\sqrt[]{2}}{3}](/latexrender/pictures/5702a5e64d62cac7ef489c3be1ef9be2.png)
![\frac{\sqrt[]{3}}{6} \frac{\sqrt[]{3}}{6}](/latexrender/pictures/09578f84c5d642cb7f35fbbbcc929176.png)
![\frac{\sqrt[]{3}}{2} \frac{\sqrt[]{3}}{2}](/latexrender/pictures/21682d7c1e802e9b52a99c01850489c4.png)
![\frac{\sqrt[]{3}}{3} \frac{\sqrt[]{3}}{3}](/latexrender/pictures/80dc3f3832b00aa8da65bd3ac29edf6d.png)











Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
![\frac{\sqrt[]{\sqrt[4]{8}+\sqrt[]{\sqrt[]{2}-1}}-\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}-1}}}{\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}+1}}} \frac{\sqrt[]{\sqrt[4]{8}+\sqrt[]{\sqrt[]{2}-1}}-\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}-1}}}{\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}+1}}}](/latexrender/pictures/981987c7bcdf9f8f498ca4605785636a.png)
(dica : igualar a expressão a
e elevar ao quadrado os dois lados)