por FilipeMSoares » Sex Mai 24, 2019 19:35
Meu exercício é de faculdade, mas acho que não terá problema, porque não acho que tenha sido a intenção da professora usar matemática de faculdade nessa questão. O problema é o seguinte:
Descreva como resolver o seguinte problema tanto com os métodos tradicionais (lapis, papel, etc) quanto com Geogebra
Construa um triângulo dado lado AB de comprimento c, ângulo ? a partir do vértice A e mediana mB.
O problema pede para você descrever os passos que cumprem a tarefa tanto com o método tradicional (papel, lápis, etc) e tanto com o Geogebra.
No Geogebra, eu preciso deixar o lado que a mediana mB toca com o tamanho correto. Não estou perguntando como fazer isso com o Geogebra: eu quero ajuda em como chegar com uma fórmula que defina o tamanho do lado em função das três variáveis descritas no problema. Eu já tentei utilizar seno e cosseno da soma dos ângulos, lei do seno, lei do cosseno, teorema de pitágoras e a propriedade que a mediana divide o triângulo em duas áreas de tamanho igual. Até agora, sem sucesso. Não sei mais como abordar o problema.
Qualquer dica, ajuda, sermão é bem-vindo.
Por favor, me ajudem.
- Anexos
-

- Uma imagem para uma visualização. Eu preciso obter o d no desenho.
-
FilipeMSoares
- Novo Usuário

-
- Mensagens: 1
- Registrado em: Sex Mai 24, 2019 19:14
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Ciência da Computação
- Andamento: cursando
Voltar para Trigonometria
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Manipulação e Cálculo
por Jhenrique » Sex Dez 07, 2012 20:50
- 4 Respostas
- 4428 Exibições
- Última mensagem por Jhenrique

Seg Dez 17, 2012 12:51
Cálculo: Limites, Derivadas e Integrais
-
- [Manipulação de Proporções]
por Tatasacchi_123 » Seg Abr 08, 2013 13:12
- 1 Respostas
- 2319 Exibições
- Última mensagem por DanielFerreira

Seg Abr 08, 2013 17:04
Funções
-
- [Cálculo 1] Manipulação de função
por Larissa28 » Ter Mar 24, 2015 23:54
- 2 Respostas
- 2361 Exibições
- Última mensagem por Larissa28

Qua Mar 25, 2015 19:47
Cálculo: Limites, Derivadas e Integrais
-
- [Cálculo 1] Manipulação de função
por Larissa28 » Dom Set 27, 2015 22:24
- 7 Respostas
- 5743 Exibições
- Última mensagem por adauto martins

Qua Set 30, 2015 17:19
Sequências
-
- [ÁLGEBRA EM FÓRMULAS]
por Andreyan » Qui Ago 16, 2012 14:09
- 4 Respostas
- 2848 Exibições
- Última mensagem por Russman

Sex Ago 17, 2012 16:15
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Dom Jan 17, 2010 14:42
Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?

O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois

2°) Admitamos que

, seja verdadeira:

(hipótese da indução)
e provemos que

Temos: (Nessa parte)

Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Seg Jan 18, 2010 01:55
Boa noite Fontelles.
Não sei se você está familiarizado com o
Princípio da Indução Finita, portanto vou tentar explicar aqui.
Ele dá uma equação, no caso:
E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:
Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que

seja verdadeiro, e pretendemos provar que também é verdadeiro para

.
Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.
Espero ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Seg Jan 18, 2010 02:28
Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Qui Jan 21, 2010 11:32
Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Jan 21, 2010 12:25
Boa tarde Fontelles!
Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.
O que temos que provar é isso:

, certo? O autor começou do primeiro membro:
Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:
Que é outra verdade. Agora, com certeza:
Agora, como

é

a

, e este por sua vez é sempre

que

, logo:
Inclusive, nunca é igual, sempre maior.
Espero (dessa vez) ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Caeros - Dom Out 31, 2010 10:39
Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?
Assunto:
Princípio da Indução Finita
Autor:
andrefahl - Dom Out 31, 2010 11:37
c.q.d. = como queriamos demonstrar =)
Assunto:
Princípio da Indução Finita
Autor:
Abelardo - Qui Mai 05, 2011 17:33
Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Mai 05, 2011 20:05
Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Assunto:
Princípio da Indução Finita
Autor:
Vennom - Qui Abr 26, 2012 23:04
MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa.

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.