• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Trigonometria] Teorema dos cossenos

[Trigonometria] Teorema dos cossenos

Mensagempor raphaelo » Qua Jul 29, 2015 14:53

É a questão 589 do livro de EM do Gelson Iezzi, 10ª edição.

Prove que em todo triângulo ABC vale a igualdade:
a²+b²+c² = 2ab cosC + 2ac cosB + 2bc cosA

Desenvolvi desta maneira até empacar:

a²+(b²+c²-2bc cosA) = 2a (b cosC + c cosB)
2a² = 2a (b cosC + c cosB)
a = b cosC + c cos B (I)

Foi aí que empaquei. Acho que me falta alguma relação fundamental de de cossenos. Forçando a barra, tentei desenvolver desmembrando os cossenos mas caí numa igualdade falsa:
Considerando que: cos C = c/a ; cos B = b/a substituindo em (I) teríamos:
a = bc/a+ cb/a
a²= 2bc -> o que não é necessáriamente verdade!
Gostaria então que me ajudassem no desenvolvimento que eu fiz até onde empaquei e caminhos alternativos para conseguir a tal prova. Gostaria de saber também o motivo de na minha "forçação de barra" eu ter chegado a um absurdo.

Bom estudo a todos!

P.S.: Esta é a minha primeira dúvida que posto neste fórum, se tiver algo que eu tiverem dicas para melhorar a exposição do problema, por favor, não exitem em dizer!
raphaelo
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Qua Jul 29, 2015 14:05
Formação Escolar: GRADUAÇÃO
Área/Curso: bach em ciências matemáticas e da Terra
Andamento: cursando

Re: [Trigonometria] Teorema dos cossenos

Mensagempor nakagumahissao » Qui Jul 30, 2015 13:50

Como precisei adicionar uma figura e é difícil colocar neste fórum, deixei resolvido em separado.

Veja a demonstração em:

http://matematicaparatodos.pe.hu/2015/0 ... -cossenos/
Eu faço a diferença. E você?

Do Poema: Quanto os professores "fazem"?
De Taylor Mali
nakagumahissao
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 386
Registrado em: Qua Abr 04, 2012 14:07
Localização: Brazil
Formação Escolar: GRADUAÇÃO
Área/Curso: Lic. Matemática
Andamento: cursando

Re: [Trigonometria] Teorema dos cossenos

Mensagempor raphaelo » Qui Jul 30, 2015 15:41

Muito obrigado, nakagumahissao!!!

A solução foi bem simples e clara! Bastou fazer a soma simultânea de cada um dos lados (abc) pela Lei dos cossenos e por algebrismo simples chegou-se a prova! Bem bolado! O caminho que percorri foi embolado!rs
raphaelo
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Qua Jul 29, 2015 14:05
Formação Escolar: GRADUAÇÃO
Área/Curso: bach em ciências matemáticas e da Terra
Andamento: cursando


Voltar para Trigonometria

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: (FGV) ... função novamente rs
Autor: my2009 - Qua Dez 08, 2010 21:48

Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :


Assunto: (FGV) ... função novamente rs
Autor: Anonymous - Qui Dez 09, 2010 17:25

Uma função de 1º grau é dada por y=ax+b.
Temos que para x=3, y=6 e para x=4, y=8.
\begin{cases}6=3a+b\\8=4a+b\end{cases}
Ache o valor de a e b, monte a função e substitua x por 10.


Assunto: (FGV) ... função novamente rs
Autor: Pinho - Qui Dez 16, 2010 13:57

my2009 escreveu:Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :



f(x)= 2.x
f(3)=2.3=6
f(4)=2.4=8
f(10)=2.10=20


Assunto: (FGV) ... função novamente rs
Autor: dagoth - Sex Dez 17, 2010 11:55

isso ai foi uma questao da FGV?

haahua to precisando trocar de faculdade.


Assunto: (FGV) ... função novamente rs
Autor: Thiago 86 - Qua Mar 06, 2013 23:11

Saudações! :-D
ví suaquestão e tentei resolver, depois você conta-me se eu acertei.
Uma função de 1º grau é dada por y=3a+b

Resposta :
3a+b=6 x(4)
4a+b=8 x(-3)
12a+4b=24
-12a-3b=-24
b=0
substituindo b na 1°, ttenho que: 3a+b=6
3a+0=6
a=2
substituindo em: y=3a+b
y=30+0
y=30
:coffee: