• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Relações no triângulo retângulo

Relações no triângulo retângulo

Mensagempor lucassouza » Sex Jan 16, 2015 20:32

gente, a questão é fácil para quem tem prática. Não precisa resolver, só gostaria que me falasse como é que tenho que fazer, conseguir fazer somente a letra A.
Anexos
Capture.JPG
Capture.JPG (22.69 KiB) Exibido 1241 vezes
lucassouza
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 29
Registrado em: Seg Set 15, 2014 15:03
Formação Escolar: SUPLETIVO
Andamento: cursando

Re: Relações no triângulo retângulo

Mensagempor DanielFerreira » Sáb Jan 17, 2015 00:18

b) Aplique o Teorema de Pitágoras no triângulo BCE;

c) Teorema de Pitágoras no triângulo ADE;

(...)
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1732
Registrado em: Qui Jul 23, 2009 21:34
Localização: Mangaratiba - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: formado


Voltar para Trigonometria

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes

 



Assunto: Exercicios de polinomios
Autor: shaft - Qua Jun 30, 2010 17:30

2x+5=\left(x+m\right)²-\left(x-n \right)²

Então, o exercicio pede para encontrar {m}^{3}-{n}^{3}.

Bom, tentei resolver a questão acima desenvolvendo as duas partes em ( )...Logo dps cheguei em um resultado q nao soube o q fazer mais.
Se vcs puderem ajudar !


Assunto: Exercicios de polinomios
Autor: Douglasm - Qua Jun 30, 2010 17:53

Bom, se desenvolvermos isso, encontramos:

2x+5 = 2x(m+n) + m^2-n^2

Para que os polinômios sejam iguais, seus respectivos coeficientes devem ser iguais (ax = bx ; ax² = bx², etc.):

2(m+n) = 2 \;\therefore\; m+n = 1

m^2-n^2 = 5 \;\therefore\; (m+n)(m-n) = 5 \;\therefore\; (m-n) = 5

Somando a primeira e a segunda equação:

2m = 6 \;\therefore\; m = 3 \;\mbox{consequentemente:}\; n=-2

Finalmente:

m^3 - n^3 = 27 + 8 = 35

Até a próxima.