• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Lei dos cossenos

Lei dos cossenos

Mensagempor kandara » Qua Abr 30, 2014 17:35

Olá, eu aprendi ontem como calcular os lados de triângulos com a Lei dos Cossenos e confesso que não está tão difícil, mas em um dos problemas, uma dúvida me surgiu quanto ao resultado, vejam:

Ex 1. Dados os seguintes elementos de um triângulo ABC: Â = 30º, AB = 8 m, CB = 5 m. Calcule AC.
Certo, eu então desenhei um triângulo qualquer com este ângulo agudo de 30 graus para visualizar melhor o problema, eis o triângulo mal feito:
Imagem

Certo, então o lado b que quero achar, até aí tudo bem, eu fiz o cálculo utilizando a lei dos cossenos:

b² = a² + c² - 2.b.c.cos30°
b² = 8² + 5² - 2.8.5.cos30°
b² = 64 + 25 - 80.cos30°
b² = 89 - 80 cos30
b² = 89 - 40?3
b² = 49?3
b² = 84,87
b = ?84,47
b= 9,19 cm aprox.

Massss... Fui conferir o gabarito desse exercício o o resultado deu: x= 4?3 + 3
Daí eu fiz 4 vezes raiz de 3 mais 3 e deu aproximadamente 9,92. Um resultado maior que o meu, a conta no gabarito está assim:
Imagem

E eu confesso que não entendi bem como chegaram nesse resultado, podem me explicar?
Obrigada.
kandara
Novo Usuário
Novo Usuário
 
Mensagens: 4
Registrado em: Sex Abr 04, 2014 15:19
Formação Escolar: EJA
Andamento: cursando

Re: Lei dos cossenos

Mensagempor Russman » Qua Abr 30, 2014 18:54

Pra um triângulo de vértices A, B e C, lados , respectivamente opostos aos pontos, a,b e c a Lei dos Cossenos pode ser escrita de 3 formas:

a^2 = b^2 + c^2 - 2bc \cos(\widehat{A})
b^2 = a^2 + c^2 - 2ac \cos(\widehat{B})
c^2 = a^2 + b^2 - 2ab \cos(\widehat{C})

O ângulo que alimenta o cossenos nas formas é o ângulo do vértice oposto ao lado que aparece destacado no lado esquerdo.

Veja que você aplicou a fórmula "para b" atribuindo o ângulo de 30° ao vértice B, que está errado. O ângulo de 30° refere-se ao vértice A.
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado


Voltar para Trigonometria

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 10:38

Olá ! Tenho essa dúvida e não consigo montar o problema para resolução:

Qual é o racional não nulo cujo o quadrado é igual à sua terça parte ?

Grata.


Assunto: Conjunto dos números racionais.
Autor: MarceloFantini - Sex Fev 18, 2011 12:27

x^2 = \frac{x}{3}


Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 12:55

também pensei que fosse assim, mas a resposta é \frac{1}{3}.

Obrigada Fantini.


Assunto: Conjunto dos números racionais.
Autor: MarceloFantini - Sex Fev 18, 2011 13:01

x^2 = \frac{x}{3} \Rightarrow x^2 - \frac{x}{3} = 0 \Rightarrow x \left(x - \frac{1}{3} \right) = 0

Como x \neq 0:

x - \frac{1}{3} = 0 \Rightarrow x = \frac{1}{3}

O que você fez?


Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 16:17

eu só consegui fazer a igualdade, não consegui desenvolver o restante, não pensei em fatoração, mas agora entendi o que vc fez.

Obrigada.