• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Lei dos cossenos

Lei dos cossenos

Mensagempor kandara » Qua Abr 30, 2014 17:35

Olá, eu aprendi ontem como calcular os lados de triângulos com a Lei dos Cossenos e confesso que não está tão difícil, mas em um dos problemas, uma dúvida me surgiu quanto ao resultado, vejam:

Ex 1. Dados os seguintes elementos de um triângulo ABC: Â = 30º, AB = 8 m, CB = 5 m. Calcule AC.
Certo, eu então desenhei um triângulo qualquer com este ângulo agudo de 30 graus para visualizar melhor o problema, eis o triângulo mal feito:
Imagem

Certo, então o lado b que quero achar, até aí tudo bem, eu fiz o cálculo utilizando a lei dos cossenos:

b² = a² + c² - 2.b.c.cos30°
b² = 8² + 5² - 2.8.5.cos30°
b² = 64 + 25 - 80.cos30°
b² = 89 - 80 cos30
b² = 89 - 40?3
b² = 49?3
b² = 84,87
b = ?84,47
b= 9,19 cm aprox.

Massss... Fui conferir o gabarito desse exercício o o resultado deu: x= 4?3 + 3
Daí eu fiz 4 vezes raiz de 3 mais 3 e deu aproximadamente 9,92. Um resultado maior que o meu, a conta no gabarito está assim:
Imagem

E eu confesso que não entendi bem como chegaram nesse resultado, podem me explicar?
Obrigada.
kandara
Novo Usuário
Novo Usuário
 
Mensagens: 4
Registrado em: Sex Abr 04, 2014 15:19
Formação Escolar: EJA
Andamento: cursando

Re: Lei dos cossenos

Mensagempor Russman » Qua Abr 30, 2014 18:54

Pra um triângulo de vértices A, B e C, lados , respectivamente opostos aos pontos, a,b e c a Lei dos Cossenos pode ser escrita de 3 formas:

a^2 = b^2 + c^2 - 2bc \cos(\widehat{A})
b^2 = a^2 + c^2 - 2ac \cos(\widehat{B})
c^2 = a^2 + b^2 - 2ab \cos(\widehat{C})

O ângulo que alimenta o cossenos nas formas é o ângulo do vértice oposto ao lado que aparece destacado no lado esquerdo.

Veja que você aplicou a fórmula "para b" atribuindo o ângulo de 30° ao vértice B, que está errado. O ângulo de 30° refere-se ao vértice A.
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado


Voltar para Trigonometria

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Princípio da Indução Finita
Autor: Fontelles - Dom Jan 17, 2010 14:42

Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?
2n \geq n+1 ,\forall n \in\aleph*
O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois 2.1 \geq 1+1
2°) Admitamos que P(k), k \in \aleph*, seja verdadeira:
2k \geq k+1 (hipótese da indução)
e provemos que 2(k+1) \geq (K+1)+1
Temos: (Nessa parte)
2(k+1) = 2k+2 \geq (k+1)+2 > (k+1)+1


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Seg Jan 18, 2010 01:55

Boa noite Fontelles.

Não sei se você está familiarizado com o Princípio da Indução Finita, portanto vou tentar explicar aqui.

Ele dá uma equação, no caso:

2n \geq n+1, \forall n \in \aleph^{*}

E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:

2*1 \geq 1+1

Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que k seja verdadeiro, e pretendemos provar que também é verdadeiro para k+1.

\mbox{Suponhamos que P(k), }k \in \aleph^{*},\mbox{ seja verdadeiro:}
2k \geq k+1

\mbox{Vamos provar que:}
2(k+1) \geq (k+1)+1

Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.

Espero ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Fontelles - Seg Jan 18, 2010 02:28

Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!


Assunto: Princípio da Indução Finita
Autor: Fontelles - Qui Jan 21, 2010 11:32

Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Jan 21, 2010 12:25

Boa tarde Fontelles!

Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.

O que temos que provar é isso: 2(k+1) \geq (k+1)+1, certo? O autor começou do primeiro membro:

2(k+1)= 2k+2

Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:

2k+2 \geq (k+1)+2

Que é outra verdade. Agora, com certeza:

(k+1)+2 > (k+1)+1

Agora, como 2(k+1) é \geq a (k+1)+2, e este por sua vez é sempre > que (k+1)+1, logo:

2(k+1) \geq (k+1)+1 \quad \mbox{(c.q.d)}

Inclusive, nunca é igual, sempre maior.

Espero (dessa vez) ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Caeros - Dom Out 31, 2010 10:39

Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?


Assunto: Princípio da Indução Finita
Autor: andrefahl - Dom Out 31, 2010 11:37

c.q.d. = como queriamos demonstrar =)


Assunto: Princípio da Indução Finita
Autor: Abelardo - Qui Mai 05, 2011 17:33

Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Mai 05, 2011 20:05

Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.


Assunto: Princípio da Indução Finita
Autor: Vennom - Qui Abr 26, 2012 23:04

MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.

Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa. :-D