• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Expressão - Razões Trig.

Expressão - Razões Trig.

Mensagempor Apotema » Ter Nov 24, 2009 08:02

O valor desta expressão
sen\frac{\pi}{2}.cos\pi+tg2\pi.sec\frac{\pi}{4}
eu devo substituir pi por 90°? ou melhor, sen pi/2 substituo por 0? e assim por diante?
Apotema
Usuário Ativo
Usuário Ativo
 
Mensagens: 17
Registrado em: Qua Nov 18, 2009 19:24
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando

Re: Expressão - Razões Trig.

Mensagempor thadeu » Ter Nov 24, 2009 11:39

Você deve lembrar dos valores dos senos e cossenos dos ângulos "mais usados" nos exercícios básicos:

sen2 \pi=0\,\,\,\,e\,\,\,cos 2 \pi=1\\sen \pi=0\,\,\,e\,\,\,cos \pi=-1\\sen \frac{\pi}{2}=1\,\,\,e\,\,\,cos \frac{\pi}{2}=0\\sen \frac{\pi}{3}=\frac{\sqrt{3}}{2}\,\,\,e\,\,\,cos \frac{\pi}{3}=\frac{1}{2}\\sen \frac{\pi}{4}=cos \frac{\pi}{4}=\frac{\sqrt{2}}{2}\\sen \frac{\pi}{6}=\frac{1}{2}\,\,\,e\,\,\,cos\frac{\pi}{6}=\frac{\sqrt{3}}{2}

Então, usando esses valores acima, teremos:

tg 2 \pi=\frac{sen 2 \pi}{cos 2 \pi}=\frac{0}{1}=0

sec \frac{\pi}{4}=\frac{1}{cos \frac{\pi}{4}}=\frac{1}{\frac{\sqrt{2}}{2}}=\frac{2}{\sqrt{2}}=\sqrt{2}

Substituindo na expressão:

sen \frac{\pi}{2}\,.\,cos \pi+tg 2 \pi\,.\,sec \frac{\pi}{4}=(1)\,.\,(-1)+\,(0)\,.\,(\sqrt{2})=-1
thadeu
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 69
Registrado em: Seg Out 19, 2009 14:05
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: formado


Voltar para Trigonometria

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}