• Anúncio Global
    Respostas
    Exibições
    Última mensagem

ufrgs

ufrgs

Mensagempor Maria Livia » Ter Set 03, 2013 12:41

se o ponteiro menor de uma relogio percorre um arco pi/12 rad, o ponteiro maior percorre um arco de:

tentei pi/12=2pi/24 ... não deu certo
Maria Livia
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 79
Registrado em: Seg Ago 13, 2012 13:03
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: ufrgs

Mensagempor MateusL » Qua Set 04, 2013 11:20

Primeiro deves notar a relação entre os ângulos percorridos pelo ponteiro grande e pelo pequeno.
Quando o grande percorre 2\pi rad, o pequeno percorrerá \dfrac{2\pi}{12}=\dfrac{\pi}{6} rad.

Então:

\dfrac{2\pi}{\frac{\pi}{6}}=\dfrac{x}{\frac{\pi}{12}}
12\cdot\dfrac{\pi}{12}=x
x=\pi

Abraço!
MateusL
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 68
Registrado em: Qua Jul 17, 2013 23:25
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando


Voltar para Trigonometria

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}