por ALPC » Qua Mai 22, 2013 17:50
Estou tendo problemas para resolver essa questão de trigonometria no triângulo retângulo no qual eu creio que se pode ser resolvido com Teorema de Pitágoras:

No jogo de bocha, disputado num terreno plano, o objetivo é conseguir lançar uma bola de raio 8 o mais próximo possível de uma bola menor, de raio 4. Num lançamento, um jogador conseguiu fazer com que as duas
bolas ficassem encostadas, conforme ilustra a figura abaixo. A distância entre os pontos A e B, em que as bolas
tocam o chão, é
a) 8
b) 6?2
c) 8?2
d) 4?3
e) 6?3
Resposta: C
Eu tentei resolver da seguinte maneira:






Simplificando:

-

ALPC
- Usuário Ativo

-
- Mensagens: 19
- Registrado em: Sex Jan 04, 2013 16:26
- Formação Escolar: ENSINO MÉDIO
- Andamento: cursando
por Pedro123 » Qui Mai 23, 2013 16:45
Seu raciocinio esta 100% correto, porém, na hora de escrever o cateto conhecido, esqueceu de descontar os raios, no caso, nao seria 8, e sim 4 cm. Tente fazer assim. Abraços
-
Pedro123
- Usuário Parceiro

-
- Mensagens: 60
- Registrado em: Qui Jun 10, 2010 22:46
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Mecanica - 1° Período
- Andamento: cursando
por ALPC » Qui Mai 23, 2013 18:30
Oi Pedro, ainda não estou conseguindo entender o motivo daquele cateto medir 4 e não 8.
O exercício diz:
No jogo de bocha, disputado num terreno plano, o objetivo é conseguir lançar uma bola de raio 8 o mais próximo possível de uma bola menor, de raio 4.
Pelo que eu entendi disso, esse cateto que vai do raio da maior bola até o ponto A deve medir 8, pois esse cateto começa do raio(8) até o ponto A.
Você poderia me explicar isso?
-

ALPC
- Usuário Ativo

-
- Mensagens: 19
- Registrado em: Sex Jan 04, 2013 16:26
- Formação Escolar: ENSINO MÉDIO
- Andamento: cursando
por Pedro123 » Qui Mai 23, 2013 21:51
Então... Pelo que eu estou vendo, creio que está confundindo onde o triângulo retângulo é formado, tomei a liberdade de usar o desenho acima para ilustrar melhor o que acontece. O fato é, o triângulo retângulo é formado pelos pontos CFD, e não pelos pontos CAB. Porém, como podemos ver, o segmento AB é igual ao segmento DF, portanto basta calcularmos DF para sabermos AB. Veja tambem que o cateto CF não é igual à 8, pois não é CA, sendo assim, ele é uma diferença entre CA (8) e FA, onde FA é igual a BD, que vale 4, pois é o raio da esfera menor. Assim, CF = CA - AF = 8 - 4 = 4
Creio que agora ficou um pouco menos confuso o meu pensamento. Se tiver mais dúvidas, é so falar. abraços
- Anexos
-

- exer_01.jpg (5.54 KiB) Exibido 6958 vezes
-
Pedro123
- Usuário Parceiro

-
- Mensagens: 60
- Registrado em: Qui Jun 10, 2010 22:46
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Mecanica - 1° Período
- Andamento: cursando
por ALPC » Dom Mai 26, 2013 00:20
Agora eu consegui entender Pedro, obrigado.
-

ALPC
- Usuário Ativo

-
- Mensagens: 19
- Registrado em: Sex Jan 04, 2013 16:26
- Formação Escolar: ENSINO MÉDIO
- Andamento: cursando
Voltar para Trigonometria
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Teorema de Pitágoras - dúvidas no problema
por Sal » Sáb Mar 24, 2012 20:03
- 0 Respostas
- 4697 Exibições
- Última mensagem por Sal

Sáb Mar 24, 2012 20:03
Geometria Plana
-
- teorema de pitagoras
por stanley tiago » Sex Jan 21, 2011 15:59
- 5 Respostas
- 4453 Exibições
- Última mensagem por stanley tiago

Sáb Jan 22, 2011 15:49
Geometria Analítica
-
- teorema de pitagoras
por stanley tiago » Dom Fev 13, 2011 18:35
- 4 Respostas
- 3312 Exibições
- Última mensagem por stanley tiago

Seg Fev 14, 2011 22:00
Geometria Analítica
-
- teorema de pitagoras
por stanley tiago » Sáb Fev 19, 2011 10:26
- 1 Respostas
- 1824 Exibições
- Última mensagem por stanley tiago

Dom Fev 20, 2011 17:48
Geometria Analítica
-
- Teorema de Pitágoras
por Lorrane12 » Sex Mar 23, 2012 19:50
- 9 Respostas
- 12299 Exibições
- Última mensagem por DanielFerreira

Sex Mar 30, 2012 00:19
Trigonometria
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
Taxa de variação
Autor:
felipe_ad - Ter Jun 29, 2010 19:44
Como resolvo uma questao desse tipo:
Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?
A letra (a) consegui resolver e cheguei no resultado correto de

Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é
Alguem me ajuda? Agradeço desde já.
Assunto:
Taxa de variação
Autor:
Elcioschin - Qua Jun 30, 2010 20:47
V = (1/3)*pi*r²*h ----> h = 4r/3
V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³
Derivando:
dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3
Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s
Assunto:
Taxa de variação
Autor:
Guill - Ter Fev 21, 2012 21:17
Temos que o volume é dado por:
Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:
Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.