por Lola » Qua Set 26, 2012 22:59
Não consegui fazer esse exercício devido ao módulo, será que alguém poderia me ajudar?
(PUC-SP) O conjunto solução da inequação |cosx| < 1/2 no intervalo [0;?/2] é:
a) [0;?/3[
b) ]?/6;?/3[
c) [0:?/6[
d) ]?/3;?/2] (correta de acordo com o gabarito)
e) ]?/6;?/2]
Muito obrigada!!
-
Lola
- Usuário Ativo

-
- Mensagens: 11
- Registrado em: Sex Mar 18, 2011 18:31
- Localização: São Paulo
- Formação Escolar: ENSINO MÉDIO
- Andamento: cursando
por Rafael16 » Qua Set 26, 2012 23:49
Definição de módulo:
|x| = x, se x ? 0
-x, se x < 0 --->OBS: se o número que estiver dentro do módulo for negativo, então é só multiplicar por -1,pois o módulo de qualquer número é sempre positivo.
Exemplo: |-10|, tirando do módulo fica -10 e depois multiplica por -1: -10.(-1)=10
|cos(x)| < 1/2
Para cos(x)>0:
cos(x) < 1/2(I)
Para cos(x)<0:
-cos(x)<1/2 --> multiplicando os lados por -1, fica:
cos(x) > -1/2(II)
Como o intervalo é [0;?/2]
Os valores de x que satisfaz (I) é [?/2,?/3[
Em (II) não tem valores de x que satisfaz, pois o intervalo vai de [0;?/2], ou seja, primeiro quadrante, e os valores de x em (II) encontra-se no segundo quadrante
Portanto a resposta é [?/2,?/3[, letra d
Espero ter ajudado.
-
Rafael16
- Colaborador Voluntário

-
- Mensagens: 154
- Registrado em: Qui Mar 01, 2012 22:24
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Análise de Sistemas
- Andamento: cursando
Voltar para Trigonometria
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Dúvida em exercício de PAG!
por Fernanda » Qui Jul 03, 2008 18:20
- 11 Respostas
- 9747 Exibições
- Última mensagem por admin

Sex Jul 04, 2008 05:01
Sequências
-
- Dúvida de Exercício
por m0x0 » Qui Jul 21, 2011 16:02
- 8 Respostas
- 4333 Exibições
- Última mensagem por m0x0

Sáb Jul 23, 2011 14:23
Álgebra Elementar
-
- Duvida em Exercício (PUC-SP)
por jrdelazary » Dom Ago 08, 2010 20:30
- 1 Respostas
- 3610 Exibições
- Última mensagem por MarceloFantini

Seg Ago 09, 2010 02:45
Progressões
-
- Exercicio duvida !!!
por LuizCarlos » Qui Ago 11, 2011 22:43
- 3 Respostas
- 2653 Exibições
- Última mensagem por LuizCarlos

Sex Ago 12, 2011 18:57
Álgebra Elementar
-
- Duvida em exercício !
por LuizCarlos » Sex Ago 12, 2011 21:01
- 1 Respostas
- 1533 Exibições
- Última mensagem por Neperiano

Dom Ago 14, 2011 13:21
Sistemas de Equações
Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Dom Jan 17, 2010 14:42
Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?

O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois

2°) Admitamos que

, seja verdadeira:

(hipótese da indução)
e provemos que

Temos: (Nessa parte)

Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Seg Jan 18, 2010 01:55
Boa noite Fontelles.
Não sei se você está familiarizado com o
Princípio da Indução Finita, portanto vou tentar explicar aqui.
Ele dá uma equação, no caso:
E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:
Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que

seja verdadeiro, e pretendemos provar que também é verdadeiro para

.
Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.
Espero ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Seg Jan 18, 2010 02:28
Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Qui Jan 21, 2010 11:32
Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Jan 21, 2010 12:25
Boa tarde Fontelles!
Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.
O que temos que provar é isso:

, certo? O autor começou do primeiro membro:
Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:
Que é outra verdade. Agora, com certeza:
Agora, como

é

a

, e este por sua vez é sempre

que

, logo:
Inclusive, nunca é igual, sempre maior.
Espero (dessa vez) ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Caeros - Dom Out 31, 2010 10:39
Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?
Assunto:
Princípio da Indução Finita
Autor:
andrefahl - Dom Out 31, 2010 11:37
c.q.d. = como queriamos demonstrar =)
Assunto:
Princípio da Indução Finita
Autor:
Abelardo - Qui Mai 05, 2011 17:33
Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Mai 05, 2011 20:05
Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Assunto:
Princípio da Indução Finita
Autor:
Vennom - Qui Abr 26, 2012 23:04
MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa.

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.