• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Numeros Reais no Ciclo Trigonométrico]

[Numeros Reais no Ciclo Trigonométrico]

Mensagempor Giudav » Sáb Set 15, 2012 18:40

O polígono ABCDE é um pentágono regular inscrito em uma circunferência trigonométrica.Indique as imagens, em graus e radianos,dos arcos com extremidades nos vértices B, C,D e E do polígono (considerando como origem o ponto A e 0°0°\leq x \leq 360° ou  0\leq x \leq 2\pi

Minha resolução: pentágono regular logo Ponto B 360°/5 = 72°,Ponto C 72° - 180 = 108°,Ponto D 180° + 72° = 252°.ponto E 360° - 72° = 288°

Gabarito :Ponto B 72° e 2pi/5,Ponto C 144° e 4pi/5,Ponto D 216° e 6pi/5,Ponto E 288° e 8pi/5 :y:
Giudav
Usuário Ativo
Usuário Ativo
 
Mensagens: 23
Registrado em: Ter Fev 21, 2012 23:16
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: [Numeros Reais no Ciclo Trigonométrico]

Mensagempor young_jedi » Sáb Set 15, 2012 22:03

A&=&0^o\\
 B&=&0^o+72^o\\
C&=&0^o+72^o+72^o\\
D&=&0^o+72^o+72^o+72^o

repare que C não esta em 72^o-180^o
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado


Voltar para Trigonometria

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Exercicios de polinomios
Autor: shaft - Qua Jun 30, 2010 17:30

2x+5=\left(x+m\right)²-\left(x-n \right)²

Então, o exercicio pede para encontrar {m}^{3}-{n}^{3}.

Bom, tentei resolver a questão acima desenvolvendo as duas partes em ( )...Logo dps cheguei em um resultado q nao soube o q fazer mais.
Se vcs puderem ajudar !


Assunto: Exercicios de polinomios
Autor: Douglasm - Qua Jun 30, 2010 17:53

Bom, se desenvolvermos isso, encontramos:

2x+5 = 2x(m+n) + m^2-n^2

Para que os polinômios sejam iguais, seus respectivos coeficientes devem ser iguais (ax = bx ; ax² = bx², etc.):

2(m+n) = 2 \;\therefore\; m+n = 1

m^2-n^2 = 5 \;\therefore\; (m+n)(m-n) = 5 \;\therefore\; (m-n) = 5

Somando a primeira e a segunda equação:

2m = 6 \;\therefore\; m = 3 \;\mbox{consequentemente:}\; n=-2

Finalmente:

m^3 - n^3 = 27 + 8 = 35

Até a próxima.