• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Teorema de Pitágoras, exercício

Teorema de Pitágoras, exercício

Mensagempor LuizCarlos » Sáb Mai 05, 2012 17:30

Olá amigos professores, estou resolvendo esse exercício:


HNI_0094.JPG



O exercício diz que as medidas estão indicadas em cm.

Então as respostas não deveriam ser em {cm}^{2}.

AC = \sqrt[]{{(3cm)}^{2} + {2cm}^{2}}

AC = \sqrt[]{{(9cm)}^{2} + {4cm}^{2}}

AC = \sqrt[]{{(13cm)}^{2}}
LuizCarlos
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 254
Registrado em: Ter Jun 21, 2011 20:39
Formação Escolar: ENSINO MÉDIO
Área/Curso: 1º ano do segundo grau
Andamento: cursando

Re: Teorema de Pitágoras, exercício

Mensagempor sony01 » Sáb Mai 05, 2012 18:46

Não, o resultado é em cm. Lembre da fórmula:

a^2 = b^2 + c^2, logo, a = \sqrt{b^2 + c^2

Um exemplo:
a = ?
b = 4 cm
c = 5 cm

a^2 = b^2 + c^2 \rightarrow a^2 = 4^2 + 5^2 \rightarrow a = \sqrt{16 + 25} \rightarrow a = \sqrt{41} cm

Minha primeira resposta no fórum!
Editado pela última vez por sony01 em Sáb Mai 05, 2012 21:31, em um total de 1 vez.
"Quem estuda sabe mais" - Filosofia de vida!
sony01
Usuário Ativo
Usuário Ativo
 
Mensagens: 11
Registrado em: Dom Mar 04, 2012 16:28
Formação Escolar: ENSINO FUNDAMENTAL II
Área/Curso: Inglês
Andamento: cursando

Re: Teorema de Pitágoras, exercício

Mensagempor LuizCarlos » Sáb Mai 05, 2012 19:47

[quote="sony01"]Não, o resultado é em cm. Lembre da fórmula:

a^2 = b^2 + c^2, logo, a = \sqrt{b^2 + c^2

Um exemplo:
a = ?
b = 4 cm
c = 5 cm

a^2 = b^2 + c^2 \rightarrow a^2 = 4^2 + 5^2 \rightarrow a = \sqrt{16 + 25} \rightarrow a = \sqrt{36} = 6 cm


Obrigado amigo sony01, por me ajudar! uma observação: 25 + 16 = 41

Já sei porque o resultado fica em cm, é porque o {cm}^{2}, cancela com o índice da raiz!
LuizCarlos
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 254
Registrado em: Ter Jun 21, 2011 20:39
Formação Escolar: ENSINO MÉDIO
Área/Curso: 1º ano do segundo grau
Andamento: cursando

Re: Teorema de Pitágoras, exercício

Mensagempor sony01 » Sáb Mai 05, 2012 21:33

Foi mal , falta de atenção. Obrigado por me corrigir!
"Quem estuda sabe mais" - Filosofia de vida!
sony01
Usuário Ativo
Usuário Ativo
 
Mensagens: 11
Registrado em: Dom Mar 04, 2012 16:28
Formação Escolar: ENSINO FUNDAMENTAL II
Área/Curso: Inglês
Andamento: cursando


Voltar para Trigonometria

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: (FGV) ... função novamente rs
Autor: my2009 - Qua Dez 08, 2010 21:48

Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :


Assunto: (FGV) ... função novamente rs
Autor: Anonymous - Qui Dez 09, 2010 17:25

Uma função de 1º grau é dada por y=ax+b.
Temos que para x=3, y=6 e para x=4, y=8.
\begin{cases}6=3a+b\\8=4a+b\end{cases}
Ache o valor de a e b, monte a função e substitua x por 10.


Assunto: (FGV) ... função novamente rs
Autor: Pinho - Qui Dez 16, 2010 13:57

my2009 escreveu:Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :



f(x)= 2.x
f(3)=2.3=6
f(4)=2.4=8
f(10)=2.10=20


Assunto: (FGV) ... função novamente rs
Autor: dagoth - Sex Dez 17, 2010 11:55

isso ai foi uma questao da FGV?

haahua to precisando trocar de faculdade.


Assunto: (FGV) ... função novamente rs
Autor: Thiago 86 - Qua Mar 06, 2013 23:11

Saudações! :-D
ví suaquestão e tentei resolver, depois você conta-me se eu acertei.
Uma função de 1º grau é dada por y=3a+b

Resposta :
3a+b=6 x(4)
4a+b=8 x(-3)
12a+4b=24
-12a-3b=-24
b=0
substituindo b na 1°, ttenho que: 3a+b=6
3a+0=6
a=2
substituindo em: y=3a+b
y=30+0
y=30
:coffee: