• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Calcule sen, cos e cotg

Calcule sen, cos e cotg

Mensagempor andersontricordiano » Qua Jan 18, 2012 21:44

a) Calcule sen\theta , cos\theta e cotg\theta , sabendo que tg\theta=\frac{a}{b}

b)Suponha o caso particular em que a=0 e , fazendo as adaptações necessárias na resposta do item (a) verifique a coerência de tal resposta.



Respostas:

a)
sen\theta=+-\frac{a\sqrt[]{{a}^{2}+{b}^{2}}}{{a}^{2}+{b}^{2}}

sen\theta=+-\frac{b\sqrt[]{{a}^{2}+{b}^{2}}}{{a}^{2}+{b}^{2}}

cotg\theta=\frac{b}{a}


b)
a=0\Rightarrow
\begin{pmatrix}
   sen\theta & =0  \\ 
   cos\theta & +-1 
\end{pmatrix}
\Rightarrow\theta=\kappa\pi, \kappa\inZ
andersontricordiano
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 192
Registrado em: Sex Mar 04, 2011 23:02
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: Calcule sen, cos e cotg

Mensagempor ant_dii » Qui Jan 19, 2012 01:55

Na verdade temos
\tan\theta=\frac{a}{b} \Rightarrow \frac{\sin\theta}{\cos\theta}=\frac{a}{b} \Rightarrow \frac{\sin\theta}{\pm \sqrt{1-\sin^2\theta}}=\frac{a}{b} \Rightarrow \\ \\ \Rightarrow \sin\theta = \frac{a}{b}\cdot (\pm \sqrt{1-\sin^2\theta}) \Rightarrow \sin^2\theta = \frac{a^2}{b^2} (1-\sin^2\theta}) \Rightarrow \\ \\ \Rightarrow \sin^2\theta = \frac{a^2}{b^2}- \frac{a^2}{b^2}\sin^2\theta} \Rightarrow \sin^2\theta + \frac{a^2}{b^2}\sin^2\theta} = \frac{a^2}{b^2} \Rightarrow \\ \\ \Rightarrow \sin^2\theta \left(1+\frac{a^2}{b^2}\right) = \frac{a^2}{b^2} \Rightarrow \sin^2\theta\left(\frac{a^2+b^2}{b^2}\right) = \frac{a^2}{b^2} \Rightarrow \\ \\ \Rightarrow \sin^2\theta = \frac{a^2}{b^2}\cdot \left(\frac{b^2}{a^2+b^2}\right) \Rightarrow \sin\theta = \pm \frac{a}{\sqrt{a^2+b^2}} \Rightarrow \sin\theta = \pm \frac{a\sqrt{a^2+b^2}}{a^2+b^2}

E como \sin^2\theta = 1- \cos^2\theta, temos

\sin^2\theta = \frac{a^2}{b^2}\cdot \left(\frac{b^2}{a^2+b^2}\right) \Rightarrow 1- \cos^2\theta= \frac{a^2}{a^2+b^2} \Rightarrow \\ \\ \Rightarrow -\cos^2\theta= \frac{a^2}{a^2+b^2} - 1 \Rightarrow -\cos^2\theta= \frac{a^2}{a^2+b^2} - \frac{a^2+b^2}{a^2+b^2} \Rightarrow \\ \\ \Rightarrow  -\cos^2\theta= \frac{-b^2}{a^2+b^2} \Rightarrow \cos^2\theta= \frac{b^2}{a^2+b^2} \Rightarrow \cos\theta= \pm \frac{b}{\sqrt{a^2+b^2}} \Rightarrow \\ \\ \Rightarrow \cos\theta= \pm \frac{b\sqrt{a^2+b^2}}{a^2+b^2}.

Como \cot\theta=\frac{1}{\tan\theta} \quad \mbox{onde} \quad \cot \theta= cotan\, \theta, então

\tan\theta=\frac{a}{b} \Rightarrow \frac{1}{\tan\theta}=\frac{1}{\frac{a}{b}} \Rightarrow \frac{1}{\tan\theta}=\frac{b}{a} \Rightarrow \cot \theta = \frac{b}{a}.

Quanto a questão b), teremos
\sin\theta=0 \Rightarrow \theta = k\pi\mbox{, onde}\quad k \in \mathbb{Z}
\cos\theta=\pm 1 \Rightarrow \theta = k\pi\mbox{, onde}\quad k \in \mathbb{Z}

Mas para o caso de que \cot \theta = \frac{b}{a}, tem-se que usar outro recurso, o limite de uma função pois a não pode ser zero...

Logo, suas respostas estavam todas corretas e só não entendi qual era a dúvida então...
Só os loucos sabem...
ant_dii
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 129
Registrado em: Qua Jun 29, 2011 19:46
Formação Escolar: GRADUAÇÃO
Área/Curso: matemática
Andamento: formado


Voltar para Trigonometria

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.